Back to Search
Start Over
Effects of Faba Bean Hull Nanoparticles on Physical Properties, Protein and Lipid Oxidation, Colour Degradation, and Microbiological Stability of Burgers under Refrigerated Storage
- Source :
- Antioxidants; Volume 11; Issue 5; Pages: 938
- Publication Year :
- 2022
- Publisher :
- Multidisciplinary Digital Publishing Institute, 2022.
-
Abstract
- The processing of faba beans generates great quantities of hulls, which are high in bioactive compounds with demonstrated radical-inhibiting properties. There is no research on the impact of using faba bean hull nanoparticles (FBH-NPs) to improve the quality and extend the shelf-life of beef products. Hence, the target of this investigation was to assess the inhibiting influence of adding FBH-NPs at two different concentrations (1 and 1.5%) on the physical attributes, lipid and protein oxidation, colour degradation, and microbiological safety of burgers during refrigerated storage (4 ± 1 °C/12 days). The FBH-NPs presented great phenolic content (103.14 ± 0.98 mg GAE/g dw) and antioxidant potential. The water holding capacity and cooking properties in burgers including FBH-NPs were improved during storage. The FBH-NPs significantly (p < 0.05) decreased the reduction rate of redness and lightness during the burger refrigerated storage and the FBH-NPs were more beneficial in preventing cold burger discolouration. In the FBH-NPs-treated burgers, peroxide values, TBARS, and protein carbonyl content were lower than in the control (up to 12 days). The microbiological load of burgers including FBH-NPs was lower than the load of the control during refrigerated storage. The findings revealed that FBH-NPs were more efficient in enhancing the cooking characteristics, retarding lipid or protein oxidation, preventing colour detrition and improving the microbial safety of burgers.
Details
- Language :
- English
- ISSN :
- 20763921
- Database :
- OpenAIRE
- Journal :
- Antioxidants; Volume 11; Issue 5; Pages: 938
- Accession number :
- edsair.doi.dedup.....d6dca07b7ebf58218936ada7aa08e438
- Full Text :
- https://doi.org/10.3390/antiox11050938