Back to Search Start Over

Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model

Authors :
Oliver Schmidt
Eugene A. Esparcia
Jethro Daniel A. Pascasio
Michael T. Castro
Xaviery N. Penisa
Joey D. Ocon
Source :
Energies, Vol 13, Iss 5276, p 5276 (2020), Energies; Volume 13; Issue 20; Pages: 5276
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Renewable energy (RE) utilization is expected to increase in the coming years due to its decreasing costs and the mounting socio-political pressure to decarbonize the world’s energy systems. On the other hand, lithium-ion (Li-ion) batteries are on track to hit the target 100 USD/kWh price in the next decade due to economy of scale and manufacturing process improvements, evident in the rise in Li-ion gigafactories. The forecast of RE and Li-ion technology costs is important for planning RE integration into existing energy systems. Previous cost predictions on Li-ion batteries were conducted using conventional learning curve models based on a single factor, such as either installed capacity or innovation activity. A two-stage learning curve model was recently investigated wherein mineral costs were taken as a factor for material cost to set the floor price, and material cost was a major factor for the battery pack price. However, these models resulted in the overestimation of future prices. In this work, the future prices of Li-ion nickel manganese cobalt oxide (NMC) battery packs - a battery chemistry of choice in the electric vehicle and stationary grid storage markets - were projected up to year 2025 using multi-factor learning curve models. Among the generated models, the two-factor learning curve model has the most realistic and statistically sound results having learning rates of 21.18% for battery demand and 3.0% for innovation. By year 2024, the projected price would fall below the 100 USD/kWh industry benchmark battery pack price, consistent with most market research predictions. Techno-economic case studies on the microgrid applications of the forecasted prices of Li-ion NMC batteries were conducted. Results showed that the decrease in future prices of Li-ion NMC batteries would make 2020 and 2023 the best years to start investing in an optimum (solar photovoltaic + wind + diesel generator + Li-ion NMC) and 100% RE (solar photovoltaic + wind + Li-ion NMC) off-grid energy system, respectively. A hybrid grid-tied (solar photovoltaic + grid + Li-ion NMC) configuration is the best grid-tied energy system under the current net metering policy, with 2020 being the best year to deploy the investment.

Details

ISSN :
19961073
Volume :
13
Database :
OpenAIRE
Journal :
Energies
Accession number :
edsair.doi.dedup.....d6c98688a703294fd144d252e4935c87