Back to Search Start Over

Comparative Analysis of Antigiardial Potential of Heat Inactivated and Probiotic Protein of Probiotic Lactobacillus rhamnosus GG in Murine Giardiasis

Authors :
Shweta Kamboj
Bhawna Sharma
Geeta Shukla
Source :
Probiotics and antimicrobial proteins. 12(1)
Publication Year :
2019

Abstract

The present study was designed to envisage the antigiardial efficacy of killed probiotic and probiotic protein (PP) of Lactobacillus rhamnosus GG in murine giardiasis. Experimentally, it was observed that animal administered either with probiotic protein emulsified with adjuvant (PP(E) + Giardia) or killed probiotic (killed probiotic (i/p) + Giardia) had significantly reduced Giardia cycle with respect to observed severity and duration of giardiasis compared with Giardia-infected mice. Further, it was found that animals belonging to PP(E) + Giardia and killed probiotic (i/p) + Giardia had significantly high levels of antigiardial IgA antibody and nitric oxide both in serum and in intestinal fluid compared with Giardia-infected and counter control mice. Histopathologyically, also animals belonging to PP(E) + Giardia and killed probiotic (i/p) + Giardia animals had intact mucosal epithelium lining, basal crypts, and normal villi along with increased goblet cells compared with severe microvillus atrophy, vacuolated epithelial cells, and ileitis in Giardia-infected mice. This is the first-ever study to demonstrate that prior administration of either killed probiotics or probiotic protein of effective probiotic reduced both the severity and the duration of giardiasis mainly by modulating the gut microbiome and morphology along with mucosal immunity, but animals belonging to PP(E) + Giardia had better response than killed probiotic (i/p) + Giardia suggesting that probiotic components do have adjuvant potential and may be used as the vaccine candidate for gastrointestinal diseases.

Details

ISSN :
18671314
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Probiotics and antimicrobial proteins
Accession number :
edsair.doi.dedup.....d64e8eeb7a664dc583a812dd1e4940b2