Back to Search Start Over

A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

Authors :
Shunri Oda
Seigo Tarucha
Kohei M. Itoh
Yusuke Hoshi
Giles Allison
Kenta Takeda
Jun Yoneda
Tetsuo Kodera
Noritaka Usami
Takumu Honda
M. R. Delbecq
Tomohiro Otsuka
Takashi Nakajima
Source :
Nature Nanotechnology. 13:102-106
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Recent advances towards spin-based quantum computation have been primarily fuelled by elaborate isolation from noise sources, such as surrounding nuclear spins and spin-electric susceptibility, to extend spin coherence. In the meanwhile, addressable single-spin and spin-spin manipulations in multiple-qubit systems will necessitate sizable spin-electric coupling. Given background charge fluctuation in nanostructures, however, its compatibility with enhanced coherence should be crucially questioned. Here we realise a single-electron spin qubit with isotopically-enriched phase coherence time (20 microseconds) and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge (instead of conventional magnetic) noise featured by a 1/f spectrum over seven decades of frequency. The qubit nevertheless exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average. Our work strongly suggests that designing artificial spin-electric coupling with account taken of charge noise is a promising route to large-scale spin-qubit systems having fault-tolerant controllability.

Details

ISSN :
17483395 and 17483387
Volume :
13
Database :
OpenAIRE
Journal :
Nature Nanotechnology
Accession number :
edsair.doi.dedup.....d64289aa115686a024bd870695ef417f