Back to Search Start Over

Finite size scaling for the core of large random hypergraphs

Authors :
Andrea Montanari
Amir Dembo
Laboratoire de Physique Théorique de l'ENS (LPTENS)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Department of Electrical Engineering and Statistics
Stanford University
Laboratoire de Physique Théorique de l'ENS [École Normale Supérieure] (LPTENS)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
Source :
Ann. Appl. Probab. 18, no. 5 (2008), 1993-2040
Publication Year :
2008
Publisher :
Institute of Mathematical Statistics, 2008.

Abstract

The (two) core of a hypergraph is the maximal collection of hyperedges within which no vertex appears only once. It is of importance in tasks such as efficiently solving a large linear system over GF[2], or iterative decoding of low-density parity-check codes used over the binary erasure channel. Similar structures emerge in a variety of NP-hard combinatorial optimization and decision problems, from vertex cover to satisfiability. For a uniformly chosen random hypergraph of $m=n\rho$ vertices and $n$ hyperedges, each consisting of the same fixed number $l\geq3$ of vertices, the size of the core exhibits for large $n$ a first-order phase transition, changing from $o(n)$ for $\rho>\rho _{\mathrm{c}}$ to a positive fraction of $n$ for $\rho0$. Analyzing the corresponding ``leaf removal'' algorithm, we determine the associated finite-size scaling behavior. In particular, if $\rho$ is inside the scaling window (more precisely, $\rho=\rho_{\mathrm{c}}+rn^{-1/2}$), the probability of having a core of size $\Theta(n)$ has a limit strictly between 0 and 1, and a leading correction of order $\Theta(n^{-1/6})$. The correction admits a sharp characterization in terms of the distribution of a Brownian motion with quadratic shift, from which it inherits the scaling with $n$. This behavior is expected to be universal for a wide collection of combinatorial problems.<br />Comment: Published in at http://dx.doi.org/10.1214/07-AAP514 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org)

Details

ISSN :
10505164
Volume :
18
Database :
OpenAIRE
Journal :
The Annals of Applied Probability
Accession number :
edsair.doi.dedup.....d630666a49603ed2fee0e327f13ab0cf
Full Text :
https://doi.org/10.1214/07-aap514