Back to Search Start Over

Fetal hypoxemia causes abnormal myocardial development in a preterm ex utero fetal ovine model

Authors :
William H. Peranteau
Heron D. Baumgarten
Avery C. Rossidis
Alan W. Flake
Ali Y. Mejaddam
Marcus G. Davey
Jack Rychik
Esha Bansal
Zhongshan Gou
Patrick E. McGovern
J. William Gaynor
Kendall M. Lawrence
Samson Hennessy-Strahs
Maryann Villeda
Carlo R. Bartoli
Jiancheng Han
Sheng Zhao
Source :
JCI Insight. 3
Publication Year :
2018
Publisher :
American Society for Clinical Investigation, 2018.

Abstract

In utero hypoxia is a major cause of neonatal morbidity and mortality and predisposes to adult cardiovascular disease. No therapies exist to correct fetal hypoxia. In a new ex utero fetal support system, we tested the hypothesis that hypoxemic support of the fetus impairs myocardial development, whereas normoxic support allows normal myocardial development. Preterm fetal lambs were connected via umbilical vessels to a low-resistance oxygenator and placed in a sterile-fluid environment. Control normoxic fetuses received normal fetal oxygenation, and hypoxemic fetuses received subphysiologic oxygenation. Fetuses with normal in utero development served as normal controls. Hypoxemic fetuses exhibited decreased maximum cardiac output in both ventricles, diastolic function, myocyte and myocyte nuclear size, and increased myocardial capillary density versus control normoxic fetuses. There were no differences between control normoxic fetuses in the fetal support system and normal in utero controls. Chronic fetal hypoxemia resulted in significant abnormalities in myocyte architecture and myocardial capillary density as well as systolic and diastolic cardiac function, whereas control fetuses showed no differences. This ex utero fetal support system has potential to become a significant research tool and novel therapy to correct fetal hypoxia.

Details

ISSN :
23793708
Volume :
3
Database :
OpenAIRE
Journal :
JCI Insight
Accession number :
edsair.doi.dedup.....d5bd87b18904731d4a1bfbc1f544370a