Back to Search
Start Over
Time course for the modulation of hepatic cytochrome P450 after administration of ethylbenzene and its correlation with toluene metabolism
- Source :
- Archives of biochemistry and biophysics. 339(1)
- Publication Year :
- 1997
-
Abstract
- The goal of the present study was to examine the time course for changes in P450 expression and hydrocarbon metabolism after acute treatment with the simple aromatic hydrocarbon ethylbenzene (EB) and to correlate these alterations with the changes observed in alkylbenzene metabolism. Male Holtzman rats were treated with a single intraperitoneal injection of EB, and the effects on specific P450-dependent activities, immunoreactive P450 isozyme levels, and RNA levels were measured at various times after injection. Toluene was used as the test alkylbenzene for examination of the EB-mediated changes on in vitro hydrocarbon metabolism. In untreated rats, toluene was metabolized almost entirely by aliphatic hydroxylation (to benzyl alcohol); however, in EB-treated rats, significant quantities of benzyl alcohol, o-cresol, and p-cresol were produced. Interestingly, 5-10 h after EB treatment, there was a 40% decrease in benzyl alcohol production. By 24 h, rates of benzyl alcohol formation returned to control levels, whereas there was a 7-fold increase in o-cresol and a greater that 50-fold increase in p-cresol production. The changes in the disposition of toluene were then correlated with changes in particular P450 isozymes. Several P450 isozymes were induced after EB administration. P450 2B1/2-dependent testosterone 16 beta-hydroxylation and P450 2B1/2-immunoreactive protein were elevated 30-fold after EB administration, reaching maxima by 24 h and remaining elevated 48 h after exposure. Changes in P450 2B1 and 2B2 RNA preceded those of the proteins. Similar results were observed with P450 1A1. P450 2E1 RNA levels were elevated after a single EB injection. However, the elevation in P450 2E1-dependent activities and immunoreactive protein levels preceded the changes in RNA, suggesting that multiple steps are affected by EB exposure. In contrast to the increases in some isozymes, P450 2C11 protein was rapidly suppressed (within the first 2-10 h) after hydrocarbon exposure, suggestive of a destabilization of the protein. When comparing the changes in P450 isozymes to alterations in toluene metabolism, the immediate suppression in aliphatic hydroxylation of toluene (in the first 5-10 h) was consistent with the decrease in P450 2C11. Subsequent to this effect, P450 2B1/2 and 2E1 were induced, which elevated production of this metabolite to control levels. The increase in the aromatic hydroxylation of toluene to both o, and p-cresol was consistent with the induction of P450s 2B1/2, 2E1, and 1A1.
- Subjects :
- Male
medicine.medical_specialty
Time Factors
medicine.medical_treatment
Metabolite
Intraperitoneal injection
Molecular Sequence Data
Biophysics
Biochemistry
Isozyme
Gene Expression Regulation, Enzymologic
Hydroxylation
chemistry.chemical_compound
Cytochrome P-450 Enzyme System
Internal medicine
medicine
Benzene Derivatives
Animals
RNA, Messenger
Molecular Biology
Biotransformation
Base Sequence
Metabolism
Toluene
Rats
Isoenzymes
Endocrinology
chemistry
Benzyl alcohol
Enzyme Induction
Microsome
Microsomes, Liver
Subjects
Details
- ISSN :
- 00039861
- Volume :
- 339
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Archives of biochemistry and biophysics
- Accession number :
- edsair.doi.dedup.....d5a4691ad5723e8a159c0a2e7ef07dd0