Back to Search Start Over

Introducing a combinatorial DNA-toolbox platform constituting defined protein-based biohybrid-materials

Authors :
Stefan M. Schiller
Wiltrud Wild
Andreas Schreiber
Karin Benz
Matthias C. Huber
Source :
Biomaterials. 35:8767-8779
Publication Year :
2014
Publisher :
Elsevier BV, 2014.

Abstract

The access to defined protein-based material systems is a major challenge in bionanotechnology and regenerative medicine. Exact control over sequence composition and modification is an important requirement for the intentional design of structure and function. Herein structural- and matrix proteins provide a great potential, but their large repetitive sequences pose a major challenge in their assembly. Here we introduce an integrative "one-vector-toolbox-platform" (OVTP) approach which is fast, efficient and reliable. The OVTP allows for the assembly, multimerization, intentional arrangement and direct translation of defined molecular DNA-tecton libraries, in combination with the selective functionalization of the yielded protein-tecton libraries. The diversity of the generated tectons ranges from elastine-, resilin, silk- to epitope sequence elements. OVTP comprises the expandability of modular biohybrid-materials via the assembly of defined multi-block domain genes and genetically encoded unnatural amino acids (UAA) for site-selective chemical modification. Thus, allowing for the modular combination of the protein-tecton library components and their functional expansion with chemical libraries via UAA functional groups with bioorthogonal reactivity. OVTP enables access to multitudes of defined protein-based biohybrid-materials for self-assembled superstructures such as nanoreactors and nanobiomaterials, e.g. for approaches in biotechnology and individualized regenerative medicine.

Details

ISSN :
01429612
Volume :
35
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....d5928ecfb5a437535da0cdaa64326d7a