Back to Search Start Over

Reconstitution of the type-1 active site of the H145G/A variants of nitrite reductase by ligand insertion

Authors :
Annamaria Molon
Hein J. Wijma
Martin Ph. Verbeet
Maria Fittipaldi
Gerard W. Canters
Martin J. Boulanger
Michael E. P. Murphy
Martina Huber
Biotechnology
Source :
Biochemistry, 42(14), 4075-4083. AMER CHEMICAL SOC
Publication Year :
2003

Abstract

Variants of the copper-containing nitrite reductase (NiR) of Alcaligenes faecalis S6 were constructed by site-directed mutagenesis, by which the C-terminal histidine ligand (His145) of the Cu in the type-1 site was replaced by an alanine or a glycine. The type-1 sites in the NiR variants as isolated, are in the reduced form, but can be oxidized in the presence of external ligands, like (substituted) imidazoles and chloride. The reduction potential of the type-1 site of NiR-H145A reconstituted with imidazole amounts to 505 mV vs NHE (20degreesC, pH 7, 10 mM imidazole), while for the native type-1 site it amounts to 260 mV. XRD data on crystals of the reduced and oxidized NiR-H145A variant show that in the reduced type-1 site the metal is 3-coordinated, but in the oxidized form takes up a ligand from the solution. With the fourth (exogenous) ligand in place the type-1 site is able to accept electrons at about the same rate as the wt NiR, but it is unable to pass the electron onto the type-2 site, leading to loss of enzymatic activity. It is argued that the uptake of an electron by the mutated type-1 site is accompanied by a loss of the exogenous ligand and a concomitant rise of the redox potential. This rise effectively traps the electron in the type-1 site.

Details

Language :
English
ISSN :
00062960
Database :
OpenAIRE
Journal :
Biochemistry, 42(14), 4075-4083. AMER CHEMICAL SOC
Accession number :
edsair.doi.dedup.....d545ae389de30f1e4e74ecbfa640ec91