Back to Search Start Over

Measurement of singly Cabibbo-suppressed decays D-0 → π0π0π0, π0π0η, π0ηη and ηηη

Authors :
M. Ablikim
M.N. Achasov
S. Ahmed
M. Albrecht
A. Amoroso
F.F. An
Q. An
J.Z. Bai
Y. Bai
O. Bakina
R. Baldini Ferroli
Y. Ban
D.W. Bennett
J.V. Bennett
N. Berger
M. Bertani
D. Bettoni
J.M. Bian
F. Bianchi
E. Boger
I. Boyko
R.A. Briere
H. Cai
X. Cai
O. Cakir
A. Calcaterra
G.F. Cao
S.A. Cetin
J. Chai
J.F. Chang
G. Chelkov
G. Chen
H.S. Chen
J.C. Chen
M.L. Chen
P.L. Chen
S.J. Chen
X.R. Chen
Y.B. Chen
X.K. Chu
G. Cibinetto
H.L. Dai
J.P. Dai
A. Dbeyssi
D. Dedovich
Z.Y. Deng
A. Denig
I. Denysenko
M. Destefanis
F. De Mori
Y. Ding
C. Dong
J. Dong
L.Y. Dong
M.Y. Dong
Z.L. Dou
S.X. Du
P.F. Duan
J. Fang
S.S. Fang
Y. Fang
R. Farinelli
L. Fava
S. Fegan
F. Feldbauer
G. Felici
C.Q. Feng
E. Fioravanti
M. Fritsch
C.D. Fu
Q. Gao
X.L. Gao
Y. Gao
Y.G. Gao
Z. Gao
B. Garillon
I. Garzia
K. Goetzen
L. Gong
W.X. Gong
W. Gradl
M. Greco
M.H. Gu
Y.T. Gu
A.Q. Guo
R.P. Guo
Y.P. Guo
Z. Haddadi
S. Han
X.Q. Hao
F.A. Harris
K.L. He
X.Q. He
F.H. Heinsius
T. Held
Y.K. Heng
T. Holtmann
Z.L. Hou
H.M. Hu
T. Hu
Y. Hu
G.S. Huang
J.S. Huang
X.T. Huang
X.Z. Huang
Z.L. Huang
T. Hussain
W. Ikegami Andersson
Q. Ji
Q.P. Ji
X.B. Ji
X.L. Ji
X.S. Jiang
X.Y. Jiang
J.B. Jiao
Z. Jiao
D.P. Jin
S. Jin
Y. Jin
T. Johansson
A. Julin
N. Kalantar-Nayestanaki
X.L. Kang
X.S. Kang
M. Kavatsyuk
B.C. Ke
T. Khan
A. Khoukaz
P. Kiese
R. Kliemt
L. Koch
O.B. Kolcu
B. Kopf
M. Kornicer
M. Kuemmel
M. Kuessner
M. Kuhlmann
A. Kupsc
W. Kühn
J.S. Lange
M. Lara
P. Larin
L. Lavezzi
H. Leithoff
C. Leng
C. Li
Cheng Li
D.M. Li
F. Li
F.Y. Li
G. Li
H.B. Li
H.J. Li
J.C. Li
Jin Li
K.J. Li
Kang Li
Ke Li
Lei Li
P.L. Li
P.R. Li
Q.Y. Li
W.D. Li
W.G. Li
X.L. Li
X.N. Li
X.Q. Li
Z.B. Li
H. Liang
Y.F. Liang
Y.T. Liang
G.R. Liao
D.X. Lin
B. Liu
B.J. Liu
C.X. Liu
D. Liu
F.H. Liu
Fang Liu
Feng Liu
H.B. Liu
H.M. Liu
Huanhuan Liu
Huihui Liu
J.B. Liu
J.Y. Liu
K. Liu
K.Y. Liu
Ke Liu
L.D. Liu
P.L. Liu
Q. Liu
S.B. Liu
X. Liu
Y.B. Liu
Z.A. Liu
Zhiqing Liu
Y.F. Long
X.C. Lou
H.J. Lu
J.G. Lu
Y. Lu
Y.P. Lu
C.L. Luo
M.X. Luo
X.L. Luo
X.R. Lyu
F.C. Ma
H.L. Ma
L.L. Ma
M.M. Ma
Q.M. Ma
T. Ma
X.N. Ma
X.Y. Ma
Y.M. Ma
F.E. Maas
M. Maggiora
Q.A. Malik
Y.J. Mao
Z.P. Mao
S. Marcello
Z.X. Meng
J.G. Messchendorp
G. Mezzadri
J. Min
T.J. Min
R.E. Mitchell
X.H. Mo
Y.J. Mo
C. Morales Morales
N.Yu. Muchnoi
H. Muramatsu
A. Mustafa
Y. Nefedov
F. Nerling
I.B. Nikolaev
Z. Ning
S. Nisar
S.L. Niu
X.Y. Niu
S.L. Olsen
Q. Ouyang
S. Pacetti
Y. Pan
M. Papenbrock
P. Patteri
M. Pelizaeus
J. Pellegrino
H.P. Peng
K. Peters
J. Pettersson
J.L. Ping
R.G. Ping
A. Pitka
R. Poling
V. Prasad
H.R. Qi
M. Qi
S. Qian
C.F. Qiao
N. Qin
X.S. Qin
Z.H. Qin
J.F. Qiu
K.H. Rashid
C.F. Redmer
M. Richter
M. Ripka
M. Rolo
G. Rong
Ch. Rosner
A. Sarantsev
M. Savrié
C. Schnier
K. Schoenning
W. Shan
M. Shao
C.P. Shen
P.X. Shen
X.Y. Shen
H.Y. Sheng
J.J. Song
W.M. Song
X.Y. Song
S. Sosio
C. Sowa
S. Spataro
G.X. Sun
J.F. Sun
L. Sun
S.S. Sun
X.H. Sun
Y.J. Sun
Y.K. Sun
Y.Z. Sun
Z.J. Sun
Z.T. Sun
C.J. Tang
G.Y. Tang
X. Tang
I. Tapan
M. Tiemens
B. Tsednee
I. Uman
G.S. Varner
B. Wang
B.L. Wang
D. Wang
D.Y. Wang
Dan Wang
K. Wang
L.L. Wang
L.S. Wang
M. Wang
Meng Wang
P. Wang
P.L. Wang
W.P. Wang
X.F. Wang
Y. Wang
Y.D. Wang
Y.F. Wang
Y.Q. Wang
Z. Wang
Z.G. Wang
Z.Y. Wang
Zongyuan Wang
T. Weber
D.H. Wei
P. Weidenkaff
S.P. Wen
U. Wiedner
M. Wolke
L.H. Wu
L.J. Wu
Z. Wu
L. Xia
Y. Xia
D. Xiao
H. Xiao
Y.J. Xiao
Z.J. Xiao
Y.G. Xie
Y.H. Xie
X.A. Xiong
Q.L. Xiu
G.F. Xu
J.J. Xu
L. Xu
Q.J. Xu
Q.N. Xu
X.P. Xu
L. Yan
W.B. Yan
W.C. Yan
Y.H. Yan
H.J. Yang
H.X. Yang
L. Yang
Y.H. Yang
Y.X. Yang
M. Ye
M.H. Ye
J.H. Yin
Z.Y. You
B.X. Yu
C.X. Yu
J.S. Yu
C.Z. Yuan
Y. Yuan
A. Yuncu
A.A. Zafar
Y. Zeng
Z. Zeng
B.X. Zhang
B.Y. Zhang
C.C. Zhang
D.H. Zhang
H.H. Zhang
H.Y. Zhang
J. Zhang
J.L. Zhang
J.Q. Zhang
J.W. Zhang
J.Y. Zhang
J.Z. Zhang
K. Zhang
L. Zhang
S.Q. Zhang
X.Y. Zhang
Y.H. Zhang
Y.T. Zhang
Yang Zhang
Yao Zhang
Yu Zhang
Z.H. Zhang
Z.P. Zhang
Z.Y. Zhang
G. Zhao
J.W. Zhao
J.Y. Zhao
J.Z. Zhao
Lei Zhao
Ling Zhao
M.G. Zhao
Q. Zhao
S.J. Zhao
T.C. Zhao
Y.B. Zhao
Z.G. Zhao
A. Zhemchugov
B. Zheng
J.P. Zheng
Y.H. Zheng
B. Zhong
L. Zhou
X. Zhou
X.K. Zhou
X.R. Zhou
X.Y. Zhou
J. Zhu
K. Zhu
K.J. Zhu
S. Zhu
S.H. Zhu
X.L. Zhu
Y.C. Zhu
Y.S. Zhu
Z.A. Zhu
J. Zhuang
B.S. Zou
J.H. Zou
Research unit Nuclear & Hadron Physics
Source :
Physics Letters B, Vol 781, Iss, Pp 368-375 (2018), Physics letters / B B 781, 368-375 (2018). doi:10.1016/j.physletb.2018.04.017, Physics Letters B, 781, 368-375. ELSEVIER SCIENCE BV
Publication Year :
2018
Publisher :
Uppsala universitet, Kärnfysik, 2018.

Abstract

Physics letters / B B 781, 368 - 375 (2018). doi:10.1016/j.physletb.2018.04.017<br />Using a data sample of $e^+e^-$ collision data corresponding to an integrated luminosity of 2.93 $fb^{-1}$ collected with the BESIII detector at a center-of-mass energy of $\sqrt{s}= 3.773~GeV$,we search for the singly Cabibbo-suppressed decays $D^{0}\to\pi^{0}\pi^{0}\pi^{0}$, $\pi^{0}\pi^{0}\eta$, $\pi^{0}\eta\eta$ and $\eta\eta\eta$ using the double tag method. The absolute branching fractions are measured to be $\mathcal{B}(D^{0}\to\pi^{0}\pi^{0}\pi^{0}) = (2.0 \pm 0.4 \pm 0.3)\times 10^{-4}$, $\mathcal{B}(D^{0}\to\pi^{0}\pi^{0}\eta) = (3.8 \pm 1.1 \pm 0.7)\times 10^{-4}$ and $\mathcal{B}(D^{0}\to\pi^{0}\eta\eta) = (7.3 \pm 1.6 \pm 1.5)\times 10^{-4}$ with the statistical significances of $4.8\sigma$, $3.8\sigma$ and $5.5\sigma$, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of $D^{0}\to\eta\eta\eta$ is found, and the upper limit on its decay branching fraction is set to be $\mathcal{B}(D^{0}\to\eta\eta\eta) < 1.3 \times 10^{-4}$ at the $90\%$ confidence level.<br />Published by North-Holland Publ., Amsterdam

Details

Language :
English
ISSN :
03702693
Database :
OpenAIRE
Journal :
Physics Letters B, Vol 781, Iss, Pp 368-375 (2018), Physics letters / B B 781, 368-375 (2018). doi:10.1016/j.physletb.2018.04.017, Physics Letters B, 781, 368-375. ELSEVIER SCIENCE BV
Accession number :
edsair.doi.dedup.....d538a4f257294e649d278772f774a797