Back to Search Start Over

Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information

Authors :
Jean-François Mangin
Josselin Houenou
Narciso López-López
Andrea Vázquez
Cyril Poupon
Susana Ladra
Pamela Guevara
Unité Baobab (BAOBAB)
Service NEUROSPIN (NEUROSPIN)
Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Building large instruments for neuroimaging: from population imaging to ultra-high magnetic fields (BAOBAB)
Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
Source :
BioMedical Engineering, BioMedical Engineering OnLine, BioMed Central, 2020, 19 (1), ⟨10.1186/s12938-020-00786-z⟩, RUC: Repositorio da Universidade da Coruña, Universidade da Coruña (UDC), RUC. Repositorio da Universidade da Coruña, Universitat Oberta de Catalunya (UOC), BioMedical Engineering OnLine, Vol 19, Iss 1, Pp 1-24 (2020), BioMedical Engineering OnLine, 2020, 19 (1), ⟨10.1186/s12938-020-00786-z⟩
Publication Year :
2020
Publisher :
BioMed Central Ltd., 2020.

Abstract

[Abstract] Background Diffusion MRI is the preferred non-invasive in vivo modality for the study of brain white matter connections. Tractography datasets contain 3D streamlines that can be analyzed to study the main brain white matter tracts. Fiber clustering methods have been used to automatically group similar fibers into clusters. However, due to inter-subject variability and artifacts, the resulting clusters are difficult to process for finding common connections across subjects, specially for superficial white matter. Methods We present an automatic method for labeling of short association bundles on a group of subjects. The method is based on an intra-subject fiber clustering that generates compact fiber clusters. Posteriorly, the clusters are labeled based on the cortical connectivity of the fibers, taking as reference the Desikan–Killiany atlas, and named according to their relative position along one axis. Finally, two different strategies were applied and compared for the labeling of inter-subject bundles: a matching with the Hungarian algorithm, and a well-known fiber clustering algorithm, called QuickBundles. Results Individual labeling was executed over four subjects, with an execution time of 3.6 min. An inspection of individual labeling based on a distance measure showed good correspondence among the four tested subjects. Two inter-subject labeling were successfully implemented and applied to 20 subjects and compared using a set of distance thresholds, ranging from a conservative value of 10 mm to a moderate value of 21 mm. Hungarian algorithm led to a high correspondence, but low reproducibility for all the thresholds, with 96 s of execution time. QuickBundles led to better correspondence, reproducibility and short execution time of 9 s. Hence, the whole processing for the inter-subject labeling over 20 subjects takes 1.17 h. Conclusion We implemented a method for the automatic labeling of short bundles in individuals, based on an intra-subject clustering and the connectivity of the clusters with the cortex. The labels provide useful information for the visualization and analysis of individual connections, which is very difficult without any additional information. Furthermore, we provide two fast inter-subject bundle labeling methods. The obtained clusters could be used for performing manual or automatic connectivity analysis in individuals or across subjects. Anillo de Investigación en Ciencia y Tecnología (Chile); 2016-21160342 Fondo Nacional de Desarrollo Científico y Tecnológico; 1190701 Anillo de Investigación en Ciencia y Tecnología (Chile); ACT172121 Anillo de Investigación en Ciencia y Tecnología (Chile); FB0008

Details

Language :
English
ISSN :
1475925X
Database :
OpenAIRE
Journal :
BioMedical Engineering, BioMedical Engineering OnLine, BioMed Central, 2020, 19 (1), ⟨10.1186/s12938-020-00786-z⟩, RUC: Repositorio da Universidade da Coruña, Universidade da Coruña (UDC), RUC. Repositorio da Universidade da Coruña, Universitat Oberta de Catalunya (UOC), BioMedical Engineering OnLine, Vol 19, Iss 1, Pp 1-24 (2020), BioMedical Engineering OnLine, 2020, 19 (1), ⟨10.1186/s12938-020-00786-z⟩
Accession number :
edsair.doi.dedup.....d506c67d8ae92f77b3e5d5ef8ff1d3b4
Full Text :
https://doi.org/10.1186/s12938-020-00786-z⟩