Back to Search
Start Over
The Kontsevich–Zorich cocycle over Veech–McMullen family of symmetric translation surfaces
- Source :
- Journal of modern dynamics, Journal of modern dynamics, American Institute of Mathematical Sciences, 2019, 14 (1), pp.21-54. ⟨10.3934/jmd.2019002⟩
- Publication Year :
- 2019
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2019.
-
Abstract
- We describe the Kontsevich–Zorich cocycle over an affine invariant orbifold coming from a (cyclic) covering construction inspired by works of Veech and McMullen. In particular, using the terminology in a recent paper of Filip, we show that all cases of Kontsevich–Zorich monodromies of \begin{document}$ SU(p,q) $\end{document} type are realized by appropriate covering constructions.
- Subjects :
- Pure mathematics
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
Type (model theory)
Translation (geometry)
Terminology
03 medical and health sciences
510 Mathematics
0302 clinical medicine
2604 Applied Mathematics
0502 economics and business
[MATH]Mathematics [math]
ComputingMilieux_MISCELLANEOUS
Orbifold
Mathematics
Algebra and Number Theory
Complex reflection group
Applied Mathematics
2603 Analysis
05 social sciences
16. Peace & justice
10123 Institute of Mathematics
Affine invariant
050203 business & management
030217 neurology & neurosurgery
Analysis
2602 Algebra and Number Theory
Subjects
Details
- ISSN :
- 1930532X and 19305311
- Volume :
- 14
- Database :
- OpenAIRE
- Journal :
- Journal of Modern Dynamics
- Accession number :
- edsair.doi.dedup.....d4e1e5012e28a9ab5abb48c69c94dcee
- Full Text :
- https://doi.org/10.3934/jmd.2019002