Back to Search
Start Over
Single-defect phonons imaged by electron microscopy
- Source :
- Nature. 589:65-69
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Crystal defects affect the thermal and heat-transport properties of materials by scattering phonons and modifying phonon spectra1–8. To appreciate how imperfections in solids influence thermal conductivity and diffusivity, it is thus essential to understand phonon–defect interactions. Sophisticated theories are available to explore such interactions, but experimental validation is limited because most phonon-detecting spectroscopic methods do not reach the high spatial resolution needed to resolve local vibrational spectra near individual defects. Here we demonstrate that space- and angle-resolved vibrational spectroscopy in a transmission electron microscope makes it possible to map the vibrational spectra of individual crystal defects. We detect a red shift of several millielectronvolts in the energy of acoustic vibration modes near a single stacking fault in cubic silicon carbide, together with substantial changes in their intensity, and find that these changes are confined to within a few nanometres of the stacking fault. These observations illustrate that the capabilities of a state-of-the-art transmission electron microscope open the door to the direct mapping of phonon propagation around defects, which is expected to provide useful guidance for engineering the thermal properties of materials. State-of-the-art electron energy-loss spectroscopy in a transmission electron microscope maps the detailed phonon spectra of single defects in silicon carbide
- Subjects :
- Multidisciplinary
Materials science
Phonon
02 engineering and technology
Electron
021001 nanoscience & nanotechnology
Thermal diffusivity
01 natural sciences
Molecular physics
Crystallographic defect
law.invention
Thermal conductivity
Transmission electron microscopy
law
0103 physical sciences
Electron microscope
010306 general physics
0210 nano-technology
Stacking fault
Subjects
Details
- ISSN :
- 14764687 and 00280836
- Volume :
- 589
- Database :
- OpenAIRE
- Journal :
- Nature
- Accession number :
- edsair.doi.dedup.....d4cd492900826534c7a991dfbd4fb4fd