Back to Search
Start Over
METRIC VERSIONS OF POSNER’S THEOREMS
- Source :
- Taiwanese journal of mathematics, 16 (6, ResearcherID, Taiwanese J. Math. 16, no. 6 (2012), 1951-1957
- Publication Year :
- 2012
- Publisher :
- The Mathematical Society of the Republic of China, 2012.
-
Abstract
- Let $S$ and $T$ be continuous linear operators on an ultraprime Banach algebra $A$. We show that if $S$, $T$, and $ST$ are close to satisfy the derivation identity on $A$, then either $S$ or $T$ approaches to zero. If $T$ is close to satisfy the derivation identity and $[T(a),a]$ is near the centre of $A$ for each $a \in A$, then either $T$ approaches to zero or $A$ is nearly commutative. Further, we give quantitative estimates of these phenomena.
- Subjects :
- Analyse fonctionnelle
Mathematics(all)
General Mathematics
46H05
Ultraprime banach algebra
Linear operators
Zero (complex analysis)
derivation
Algèbre - théorie des anneaux - théorie des corps
Combinatorics
Identity (mathematics)
Banach algebra
Metric (mathematics)
47B47
Commutative property
47B48
Centralizing map
Mathematics
Subjects
Details
- ISSN :
- 10275487 and 19511957
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- Taiwanese Journal of Mathematics
- Accession number :
- edsair.doi.dedup.....d4b9f8719838dd29f8a52dcef9f37319