Back to Search Start Over

Finite-dimensional observer-based boundary stabilization of reaction-diffusion equations with a either Dirichlet or Neumann boundary measurement

Authors :
Hugo Lhachemi
Christophe Prieur
Laboratoire des signaux et systèmes (L2S)
CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
GIPSA - Infinite Dimensional Dynamics (GIPSA-INFINITY)
GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )
Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Grenoble Alpes (UGA)
ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019)
Source :
Automatica, Automatica, Elsevier, 2022, 135, pp.109955. ⟨10.1016/j.automatica.2021.109955⟩, Automatica, Elsevier, 2022, 135, pp.109955
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

This paper investigates the output feedback boundary control of reaction-diffusion equations with either distributed or boundary measurement by means of a finite-dimensional observer. A constructive method dealing with the design of finite-dimensional observers for the feedback stabilization of reaction-diffusion equations was reported in a recent paper in the case where either the control or the observation operator is bounded and also satisfies certain regularity assumptions. In this paper, we go beyond by demonstrating that a finite-dimensional state-feedback combined with a finite-dimensional observer can always be successfully designed in order to achieve the Dirichlet boundary stabilization of reaction-diffusion PDEs with a either Dirichlet or Neumann boundary measurement.<br />Comment: Accepted for publication in Automatica

Details

ISSN :
00051098
Database :
OpenAIRE
Journal :
Automatica, Automatica, Elsevier, 2022, 135, pp.109955. ⟨10.1016/j.automatica.2021.109955⟩, Automatica, Elsevier, 2022, 135, pp.109955
Accession number :
edsair.doi.dedup.....d4b9811cfee4049fad275eb4ab43ad51
Full Text :
https://doi.org/10.48550/arxiv.2108.10664