Back to Search Start Over

Aberrant Transcriptional Regulation of Super-enhancers by RET Finger Protein-histone Deacetylase 1 Complex in Glioblastoma: Chemoresistance to Temozolomide

Authors :
Kosuke Aoki
Atsushi Natsume
Masaki Hirano
Toshihiko Wakabayashi
Melissa Ranjit
Source :
Neurologia medico-chirurgica
Publication Year :
2019
Publisher :
The Japan Neurosurgical Society, 2019.

Abstract

Glioblastoma (GBM), the most common primary brain tumor, is the most aggressive human cancers, with a median survival rate of only 14.6 months. Temozolomide (TMZ) is the frontline chemotherapeutic drug in GBM. Drug resistance is the predominant obstacle in TMZ therapy. Drug resistance occurs via multiple pathways such as DNA mismatch repair and base excision repair systems, by which glioma cells acquire chemoresistance to some extent (5% and 95%, respectively). Histone3 Lysin27 residue-acetylation (H3K27ac) status regulates cis-regulatory elements, which increases the likelihood of gene transcription. Histone deacetylase (HDAC) complex deacetylate lysine residues on core histones, leading to a decrease in gene transcription. In cis-regulatory element regions, complexes with HDAC repress histones by H3K27ac deacetylation. The cis-regulating and three-dimensional transcriptional mechanism is called "super-enhancer". RET finger protein (RFP) is a protein that is expressed in many kinds of cancer. RFP forms a protein complex with HDAC1. The disruption of the RFP-HDAC1 complex has resulted in increased drug sensitivity in other cancers. We conclude that the downregulation of RFP or the disruption of the RFP/HDAC1 complex leads to an increase in TMZ efficacy in glioblastoma by changing histone modifications which lead to changes in cell division, cell cycle and apoptosis.

Details

Language :
English
ISSN :
13498029 and 04708105
Volume :
59
Issue :
8
Database :
OpenAIRE
Journal :
Neurologia medico-chirurgica
Accession number :
edsair.doi.dedup.....d431fd888f5cd11767aa4a73551c92e7