Back to Search Start Over

Recurrently connected and localized neuronal communities initiate coordinated spontaneous activity in neuronal networks

Authors :
Thierry Nieus
Alessandro Maccione
Davide Lonardoni
Luca Berdondini
Hayder Amin
Stefano Di Marco
Source :
PLoS Computational Biology, PLoS Computational Biology, Vol 13, Iss 7, p e1005672 (2017)
Publication Year :
2017
Publisher :
Public Library of Science (PLoS), 2017.

Abstract

Developing neuronal systems intrinsically generate coordinated spontaneous activity that propagates by involving a large number of synchronously firing neurons. In vivo, waves of spikes transiently characterize the activity of developing brain circuits and are fundamental for activity-dependent circuit formation. In vitro, coordinated spontaneous spiking activity, or network bursts (NBs), interleaved within periods of asynchronous spikes emerge during the development of 2D and 3D neuronal cultures. Several studies have investigated this type of activity and its dynamics, but how a neuronal system generates these coordinated events remains unclear. Here, we investigate at a cellular level the generation of network bursts in spontaneously active neuronal cultures by exploiting high-resolution multielectrode array recordings and computational network modelling. Our analysis reveals that NBs are generated in specialized regions of the network (functional neuronal communities) that feature neuronal links with high cross-correlation peak values, sub-millisecond lags and that share very similar structural connectivity motifs providing recurrent interactions. We show that the particular properties of these local structures enable locally amplifying spontaneous asynchronous spikes and that this mechanism can lead to the initiation of NBs. Through the analysis of simulated and experimental data, we also show that AMPA currents drive the coordinated activity, while NMDA and GABA currents are only involved in shaping the dynamics of NBs. Overall, our results suggest that the presence of functional neuronal communities with recurrent local connections allows a neuronal system to generate spontaneous coordinated spiking activity events. As suggested by the rules used for implementing our computational model, such functional communities might naturally emerge during network development by following simple constraints on distance-based connectivity.<br />Author summary Coordinated spontaneous spiking activity is fundamental for the normal formation of brain circuits during development. However, how ensembles of neurons generate these events remains unclear. To address this question, in the present study, we investigated the network properties that might be required to a neuronal system for the generation of these spontaneous waves of spikes. We performed our study on spontaneously active neuronal cell cultures using high-resolution electrical recordings and a computational network model developed to reproduce our experimental data both quantitatively and qualitatively. Through the analysis of both experimental and simulated data, we found that network bursts are initiated in regions of the network, or “functional communities”, characterized by particular local connectivity properties. We also found that these regions can amplify the background asynchronous spiking activity preceding a network burst and, in this way, can give rise to coordinated spiking events. As a whole, our results suggest the presence of functional communities of neurons in a developing neuronal system that might naturally emerge by following simple constraints on distance-based connectivity. These regions are most likely required for the generation of the spontaneous coordinated activity that can drive activity-dependent circuit formation.

Details

ISSN :
15537358
Volume :
13
Database :
OpenAIRE
Journal :
PLOS Computational Biology
Accession number :
edsair.doi.dedup.....d426653119d2db4cea928f2c20247a15
Full Text :
https://doi.org/10.1371/journal.pcbi.1005672