Back to Search
Start Over
A Posteriori Estimates for a Natural Neumann–Neumann Domain Decomposition Algorithm on a Unilateral Contact Problem
- Source :
- Journal of Scientific Computing, Journal of Scientific Computing, Springer Verlag, 2015, 64 (3), pp.818-836. ⟨10.1007/s10915-014-9944-8⟩, Journal of Scientific Computing, Springer Verlag, 2015, 64 (3), pp.818-836. 〈10.1007/s10915-014-9944-8〉, Journal of Scientific Computing, 2015, 64 (3), pp.818-836. ⟨10.1007/s10915-014-9944-8⟩
- Publication Year :
- 2015
- Publisher :
- HAL CCSD, 2015.
-
Abstract
- International audience; In this paper we present an error estimator for unilateral contact problems solved by a Neumann–Neumann Domain Decomposition algorithm. This error estimator takes into account both the spatial error due to the finite element discretization and the algebraic error due to the domain decomposition algorithm. To differentiate specifically the contribution of these two error sources to the global error, two quantities are introduced: a discretization error indicator and an algebraic error indicator. The effectivity indices and the convergence of both the global error estimator and the error indicators are shown on several examples.
- Subjects :
- Contact problem
Mathematical optimization
Truncation error
Discretization
Unilateral contact
Theoretical Computer Science
Error estimation
[SPI]Engineering Sciences [physics]
Approximation error
Convergence (routing)
[ SPI ] Engineering Sciences [physics]
Applied mathematics
Algebraic error
Discretization error
ComputingMilieux_MISCELLANEOUS
Mathematics
Numerical Analysis
Applied Mathematics
General Engineering
Estimator
Computational Mathematics
Computational Theory and Mathematics
A priori and a posteriori
Round-off error
Domain decomposition algorithm
Software
Subjects
Details
- Language :
- English
- ISSN :
- 08857474 and 15737691
- Database :
- OpenAIRE
- Journal :
- Journal of Scientific Computing, Journal of Scientific Computing, Springer Verlag, 2015, 64 (3), pp.818-836. ⟨10.1007/s10915-014-9944-8⟩, Journal of Scientific Computing, Springer Verlag, 2015, 64 (3), pp.818-836. 〈10.1007/s10915-014-9944-8〉, Journal of Scientific Computing, 2015, 64 (3), pp.818-836. ⟨10.1007/s10915-014-9944-8⟩
- Accession number :
- edsair.doi.dedup.....d3b61a0875076f7f0d8374bd4f2f64b7