Back to Search
Start Over
On flat generators and Matlis duality for quasicoherent sheaves
- Source :
- Bulletin of the London Mathematical Society. 53:63-74
- Publication Year :
- 2020
- Publisher :
- Wiley, 2020.
-
Abstract
- We show that for a quasicompact quasiseparated scheme $X$, the following assertions are equivalent: (1) the category $\operatorname{QCoh}(X)$ of all quasicoherent sheaves on $X$ has a flat generator; (2) for every injective object $\mathcal E$ of $\operatorname{QCoh}(X)$, the internal hom functor into $\mathcal E$ is exact; (3) the scheme $X$ is semiseparated.<br />Comment: 8 pages, added Section 3
Details
- ISSN :
- 14692120 and 00246093
- Volume :
- 53
- Database :
- OpenAIRE
- Journal :
- Bulletin of the London Mathematical Society
- Accession number :
- edsair.doi.dedup.....d3a0dd4a4ed5f591c398d391cd1bf586
- Full Text :
- https://doi.org/10.1112/blms.12398