Back to Search Start Over

On flat generators and Matlis duality for quasicoherent sheaves

Authors :
Jan Stovicek
Alexander Slávik
Source :
Bulletin of the London Mathematical Society. 53:63-74
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

We show that for a quasicompact quasiseparated scheme $X$, the following assertions are equivalent: (1) the category $\operatorname{QCoh}(X)$ of all quasicoherent sheaves on $X$ has a flat generator; (2) for every injective object $\mathcal E$ of $\operatorname{QCoh}(X)$, the internal hom functor into $\mathcal E$ is exact; (3) the scheme $X$ is semiseparated.<br />Comment: 8 pages, added Section 3

Details

ISSN :
14692120 and 00246093
Volume :
53
Database :
OpenAIRE
Journal :
Bulletin of the London Mathematical Society
Accession number :
edsair.doi.dedup.....d3a0dd4a4ed5f591c398d391cd1bf586
Full Text :
https://doi.org/10.1112/blms.12398