Back to Search
Start Over
Deep Neural Networks for Automatic Classification of Anesthetic-Induced Unconsciousness
- Source :
- Brain Informatics: International Conference, BI 2018, Arlington, TX, USA, December 7–9, 2018, Proceedings, 216-225, STARTPAGE=216;ENDPAGE=225;TITLE=Brain Informatics, Brain Informatics ISBN: 9783030055868, BI
- Publication Year :
- 2018
- Publisher :
- Springer, 2018.
-
Abstract
- Despite the common use of anesthetics to modulate consciousness in the clinic, brain-based monitoring of consciousness is uncommon. We com-bined electroencephalographic measurement of brain activity with deep neural networks to automatically discriminate anesthetic states induced by propofol. Our results with leave-one-participant-out-cross-validation show that convolutional neural networks significantly outperform multilayer perceptrons in discrimination accuracy when working with raw time series. Perceptrons achieved comparable accuracy when provided with power spec-tral densities. These findings highlight the potential of deep convolutional networks for completely automatic extraction of useful spatio-temporo-spectral features from human EEG.
- Subjects :
- Consciousness
Computer science
Brain activity and meditation
media_common.quotation_subject
Physics::Medical Physics
Electroencephalography
Convolutional neural network
medicine
Anesthesia
EEG
media_common
medicine.diagnostic_test
Quantitative Biology::Neurons and Cognition
business.industry
Deep learning
Unconsciousness
Pattern recognition
Perceptron
Anesthetic
Artificial intelligence
medicine.symptom
business
medicine.drug
Subjects
Details
- Language :
- English
- ISBN :
- 978-3-030-05586-8
- ISSN :
- 03029743
- ISBNs :
- 9783030055868
- Database :
- OpenAIRE
- Journal :
- Brain Informatics: International Conference, BI 2018, Arlington, TX, USA, December 7–9, 2018, Proceedings, 216-225, STARTPAGE=216;ENDPAGE=225;TITLE=Brain Informatics, Brain Informatics ISBN: 9783030055868, BI
- Accession number :
- edsair.doi.dedup.....d38b8bfee33f26b5a7e6cf8f55529626