Back to Search Start Over

Deep Neural Networks for Automatic Classification of Anesthetic-Induced Unconsciousness

Authors :
Patlatzoglou, K.
Chennu, S.
Boly, M.
Noirhomme, Q.
Bonhomme, V.
Brichant, J.F.
Gosseries, O.
Laureys, S.
Wang, S.
Yamamoto, V.
Su, J.
Yang, Y.
Jones, E.
Iasemidis, L.
Mitchell, T.
Wang, Shouyi
Yamamoto, Vicky
Su, Jianzhong
Yang, Yang
Jones, Erick
Iasemidis, Leon
Mitchell, Tom
Vision
RS: FPN CN 1
Source :
Brain Informatics: International Conference, BI 2018, Arlington, TX, USA, December 7–9, 2018, Proceedings, 216-225, STARTPAGE=216;ENDPAGE=225;TITLE=Brain Informatics, Brain Informatics ISBN: 9783030055868, BI
Publication Year :
2018
Publisher :
Springer, 2018.

Abstract

Despite the common use of anesthetics to modulate consciousness in the clinic, brain-based monitoring of consciousness is uncommon. We com-bined electroencephalographic measurement of brain activity with deep neural networks to automatically discriminate anesthetic states induced by propofol. Our results with leave-one-participant-out-cross-validation show that convolutional neural networks significantly outperform multilayer perceptrons in discrimination accuracy when working with raw time series. Perceptrons achieved comparable accuracy when provided with power spec-tral densities. These findings highlight the potential of deep convolutional networks for completely automatic extraction of useful spatio-temporo-spectral features from human EEG.

Details

Language :
English
ISBN :
978-3-030-05586-8
ISSN :
03029743
ISBNs :
9783030055868
Database :
OpenAIRE
Journal :
Brain Informatics: International Conference, BI 2018, Arlington, TX, USA, December 7–9, 2018, Proceedings, 216-225, STARTPAGE=216;ENDPAGE=225;TITLE=Brain Informatics, Brain Informatics ISBN: 9783030055868, BI
Accession number :
edsair.doi.dedup.....d38b8bfee33f26b5a7e6cf8f55529626