Back to Search
Start Over
Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography
- Source :
- Salewski, M, Nocente, M, Jacobsen, A S, Binda, F, Cazzaniga, C, Eriksson, J, Geiger, B, Gorini, G, Hellesen, C, Kiptily, V G, Koskela, T, Korsholm, S B, Kurki-Suonio, T, Leipold, F, Moseev, D, Nielsen, S K, Rasmussen, J, Schneider, P A, Sharapov, S E, Stejner, M & Tardocchi, M 2018, ' Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography ', Fusion Science and Technology, vol. 74, no. 1-2, pp. 23-36 . https://doi.org/10.1080/15361055.2017.1380482, Fusion Science and Technology, Fusion science and technology 74 (2018): 23–36. doi:10.1080/15361055.2017.1380482, info:cnr-pdr/source/autori:Salewski, M.; Nocente, M.; Jacobsen, A. S.; Binda, F.; Cazzaniga, C.; Eriksson, J.; Geiger, B.; Gorini, G.; Hellesen, C.; Kiptily, V. G.; Koskela, T.; Korsholm, S. B.; Kurki-Suonio, T.; Leipold, F.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Schneider, P. A.; Sharapov, S. E.; Stejner, M.; Tardocchi, M./titolo:Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography/doi:10.1080%2F15361055.2017.1380482/rivista:Fusion science and technology/anno:2018/pagina_da:23/pagina_a:36/intervallo_pagine:23–36/volume:74
- Publication Year :
- 2018
-
Abstract
- Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non-Maxwellian fast-ion distribution functions. This has recently been overcome by velocity-space tomography. In this method two-dimensional images of the velocity distribution functions consisting of a few hundreds or thousands of pixels are reconstructed using the available fast-ion measurements. Here we present an overview and current status of this emerging technique at the ASDEX Upgrade tokamak and the JET toamak based on fast-ion D-alpha spectroscopy, collective Thomson scattering, gamma-ray and neutron emission spectrometry, and neutral particle analyzers. We discuss Tikhonov regularization within the Bayesian framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors.
- Subjects :
- Nuclear and High Energy Physics
Tokamak
Fast ion
Plasma parameters
Bayesian probability
Measure (physics)
01 natural sciences
010305 fluids & plasmas
law.invention
Ion
law
Physics::Plasma Physics
0103 physical sciences
Velocity space
General Materials Science
fast ions
Velocity-space tomography
010306 general physics
Civil and Structural Engineering
Physics
ta114
Mechanical Engineering
Fast ions
Magnetically confined plasmas, fast ions, bayesian analysis
Computational physics
Nuclear Energy and Engineering
Tomography
Tokamaks
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Salewski, M, Nocente, M, Jacobsen, A S, Binda, F, Cazzaniga, C, Eriksson, J, Geiger, B, Gorini, G, Hellesen, C, Kiptily, V G, Koskela, T, Korsholm, S B, Kurki-Suonio, T, Leipold, F, Moseev, D, Nielsen, S K, Rasmussen, J, Schneider, P A, Sharapov, S E, Stejner, M & Tardocchi, M 2018, ' Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography ', Fusion Science and Technology, vol. 74, no. 1-2, pp. 23-36 . https://doi.org/10.1080/15361055.2017.1380482, Fusion Science and Technology, Fusion science and technology 74 (2018): 23–36. doi:10.1080/15361055.2017.1380482, info:cnr-pdr/source/autori:Salewski, M.; Nocente, M.; Jacobsen, A. S.; Binda, F.; Cazzaniga, C.; Eriksson, J.; Geiger, B.; Gorini, G.; Hellesen, C.; Kiptily, V. G.; Koskela, T.; Korsholm, S. B.; Kurki-Suonio, T.; Leipold, F.; Moseev, D.; Nielsen, S. K.; Rasmussen, J.; Schneider, P. A.; Sharapov, S. E.; Stejner, M.; Tardocchi, M./titolo:Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography/doi:10.1080%2F15361055.2017.1380482/rivista:Fusion science and technology/anno:2018/pagina_da:23/pagina_a:36/intervallo_pagine:23–36/volume:74
- Accession number :
- edsair.doi.dedup.....d378f60e7a7c333cda0295cd9990479a
- Full Text :
- https://doi.org/10.1080/15361055.2017.1380482