Back to Search Start Over

Aerobic and Hydrolytic Decomposition of Pseudotetrahedral Nickel Phenolate Complexes

Authors :
Gregory T. Rohde
Victor G. Young
Tapash Deb
Michael P. Jensen
Source :
Inorganic Chemistry. 51:7257-7270
Publication Year :
2012
Publisher :
American Chemical Society (ACS), 2012.

Abstract

Pseudotetrahedral nickel(II) phenolate complexes Tp(R,Me)Ni-OAr (Tp(R,Me) = hydrotris(3-R-5-methylpyrazol-1-yl)borate; R = Ph {1a}, Me {1b}; OAr = O-2,6-(i)Pr(2)C(6)H(3)) were synthesized as models for nickel-substituted copper amine oxidase apoenzyme, which utilizes an N(3)O (i.e., His(3)Tyr) donor set to activate O(2) within its active site for oxidative modification of the tyrosine residue. The bioinspired synthetic complexes 1a,b are stable in dilute CH(2)Cl(2) solutions under dry anaerobic conditions, but they decompose readily upon exposure to O(2) and H(2)O. Aerobic decomposition of 1a yields a range of organic products consistent with formation of phenoxyl radical, including 2,6-diisopropyl-1,4-benzoquinone, 3,5,3',5'-tetraisopropyl-4,4'-diphenodihydroquinone, and 3,5,3',5'-tetraisopropyl-4,4'-diphenoquinone, which requires concurrent O(2) reduction. The dimeric product complex di[hydro{bis(3-phenyl-5-methylpyrazol-1-yl)(3-ortho-phenolato-5-methylpyrazol-1-yl)borato}nickel(II)] (2) was obtained by ortho C-H bond hydroxylation of a 3-phenyl ligand substituent on 1a. In contrast, aerobic decomposition of 1b yields a dimeric complex [Tp(Me,Me)Ni](2)(μ-CO(3)) (3) with unmodified ligands. However, a unique organic product was recovered, assigned as 3,4-dihydro-3,4-dihydroxy-2,6-diisopropylcyclohex-5-enone on the basis of (1)H NMR spectroscopy, which is consistent with dihydroxylation (i.e., addition of H(2)O(2)) across the meta and para positions of the phenol ring. Initial hydrolysis of 1b yields free phenol and the known complex [Tp(Me,Me)Ni(μ-OH)](2), while hydrolysis of 1a yields an uncharacterized intermediate, which subsequently rearranges to the new sandwich complex [(Tp(Ph,Me))(2)Ni] (4). Autoxidation of the released phenol under O(2) was observed, but the reaction was slow and incomplete. However, both 4 and the in situ hydrolysis intermediate derived from 1a react with added H(2)O(2) to form 2. A mechanistic scheme is proposed to account for the observed product formation by convergent oxygenation and hydrolytic autoxidation pathways, and hypothetical complex intermediates along the former were modeled by DFT calculations. All new complexes (i.e., 1a,b and 2-4) were fully characterized by FTIR, (1)H NMR, and UV-vis-NIR spectroscopy and by X-ray crystallography.

Details

ISSN :
1520510X and 00201669
Volume :
51
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi.dedup.....d371064c67c2a48c19453749c40f4690
Full Text :
https://doi.org/10.1021/ic300551z