Back to Search Start Over

Inverse probability weighting to handle attrition in cohort studies: some guidance and a call for caution

Authors :
Marie-Astrid Metten
Nathalie Costet
Luc Multigner
Jean-François Viel
Guillaume Chauvet
EHESP-Irset (EHESP-Irset)
École des Hautes Études en Santé Publique [EHESP] (EHESP)
Institut de recherche en santé, environnement et travail (Irset)
Université d'Angers (UA)-Université de Rennes (UR)-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
Institut de Recherche Mathématique de Rennes (IRMAR)
Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-École normale supérieure - Rennes (ENS Rennes)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-INSTITUT AGRO Agrocampus Ouest
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)
Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
This work was supported by grants from the French Ministry of Health, General Health Directorate (N° DGS RMC11129NNA & R17142NN), and the Fondation de France (N° 69263).
HAL UR1, Admin
Source :
BMC Medical Research Methodology, BMC Medical Research Methodology, 2022, 22 (1), pp.45. ⟨10.1186/s12874-022-01533-9⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

BackgroundAttrition in cohort studies challenges causal inference. Although inverse probability weighting (IPW) has been proposed to handle attrition in association analyses, its relevance has been little studied in this context. We aimed to investigate its ability to correct for selection bias in exposure-outcome estimation by addressing an important methodological issue: the specification of the response model.MethodsA simulation study compared the IPW method with complete-case analysis (CCA) for nine response-mechanism scenarios (3 missing at random – MAR and 6 missing not at random - MNAR). Eighteen response models differing by the type of variables included were assessed.ResultsThe IPW method was equivalent to CCA in terms of bias and consistently less efficient in all scenarios, regardless of the response model tested. The most effective response model included only the confounding factors of the association model.ConclusionOur study questions the ability of the IPW method to correct for selection bias in situations of attrition leading to missing outcomes. If the method is to be used, we encourage including only the confounding variables of the association of interest in the response model.

Details

Language :
English
ISSN :
14712288
Database :
OpenAIRE
Journal :
BMC Medical Research Methodology, BMC Medical Research Methodology, 2022, 22 (1), pp.45. ⟨10.1186/s12874-022-01533-9⟩
Accession number :
edsair.doi.dedup.....d33ced3fbcb7f64afb8d0e7e9da30706