Back to Search
Start Over
Deep Learning based Spectral CT Imaging
- Publication Year :
- 2020
-
Abstract
- Spectral computed tomography (CT) has attracted much attention in radiation dose reduction, metal artifacts removal, tissue quantification and material discrimination. The x-ray energy spectrum is divided into several bins, each energy-bin-specific projection has a low signal-noise-ratio (SNR) than the current-integrating counterpart, which makes image reconstruction a unique challenge. Traditional wisdom is to use prior knowledge based iterative methods. However, this kind of methods demands a great computational cost. Inspired by deep learning, here we first develop a deep learning based reconstruction method; i.e., U-net with L_p^p-norm, Total variation, Residual learning, and Anisotropic adaption (ULTRA). Specifically, we emphasize the Various Multi-scale Feature Fusion and Multichannel Filtering Enhancement with a denser connection encoding architecture for residual learning and feature fusion. To address the image deblurring problem associated with the $L_2^2$-loss, we propose a general $L_p^p$-loss, $p>0$ Furthermore, the images from different energy bins share similar structures of the same object, the regularization characterizing correlations of different energy bins is incorporated into the $L_p^p$-loss function, which helps unify the deep learning based methods with traditional compressed sensing based methods. Finally, the anisotropically weighted total variation is employed to characterize the sparsity in the spatial-spectral domain to regularize the proposed network. In particular, we validate our ULTRA networks on three large-scale spectral CT datasets, and obtain excellent results relative to the competing algorithms. In conclusion, our quantitative and qualitative results in numerical simulation and preclinical experiments demonstrate that our proposed approach is accurate, efficient and robust for high-quality spectral CT image reconstruction.
- Subjects :
- Deblurring
business.industry
Computer science
Iterative method
Phantoms, Imaging
Cognitive Neuroscience
Deep learning
Image and Video Processing (eess.IV)
Pattern recognition
Iterative reconstruction
Electrical Engineering and Systems Science - Image and Video Processing
Residual
Regularization (mathematics)
Compressed sensing
Deep Learning
Artificial Intelligence
Image Processing, Computer-Assisted
FOS: Electrical engineering, electronic engineering, information engineering
Artificial intelligence
business
Projection (set theory)
Tomography, X-Ray Computed
Algorithms
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....d321ad18752a45af12d378178c306388