Back to Search Start Over

Deep Hybrid Learning Prediction of Patient-Specific Quality Assurance in Radiotherapy: Implementation in Clinical Routine

Authors :
Noémie Moreau
Laurine Bonnor
Cyril Jaudet
Laetitia Lechippey
Nadia Falzone
Alain Batalla
Cindy Bertaut
Aurélien Corroyer-Dulmont
Physique médicale (radiophysique) [Centre François Baclesse]
Centre Régional de Lutte contre le Cancer François Baclesse [Caen] (UNICANCER/CRLC)
Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)-Normandie Université (NU)-UNICANCER-Tumorothèque de Caen Basse-Normandie (TCBN)
GenesisCare
Site Louis Pasteur [CHPC]
CH Centre Hospitalier Public du Cotentin (CHPC)
GIP Cyceron (Cyceron)
Université de Caen Normandie (UNICAEN)
Normandie Université (NU)-Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-CHU Caen
Normandie Université (NU)-Tumorothèque de Caen Basse-Normandie (TCBN)-Tumorothèque de Caen Basse-Normandie (TCBN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Imagerie et Stratégies Thérapeutiques pour les Cancers et Tissus cérébraux (ISTCT)
Normandie Université (NU)-Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Diagnostics, Volume 13, Issue 5, Pages: 943, Diagnostics, 2023, 13, pp.943. ⟨10.3390/diagnostics13050943⟩
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

CERVOXY; International audience; Background: Arc therapy allows for better dose deposition conformation, but the radiotherapy plans (RT plans) are more complex, requiring patient-specific pre-treatment quality assurance (QA). In turn, pre-treatment QA adds to the workload. The objective of this study was to develop a predictive model of Delta4-QA results based on RT-plan complexity indices to reduce QA workload. Methods. Six complexity indices were extracted from 1632 RT VMAT plans. A machine learning (ML) model was developed for classification purpose (two classes: compliance with the QA plan or not). For more complex locations (breast, pelvis and head and neck), innovative deep hybrid learning (DHL) was trained to achieve better performance. Results. For not complex RT plans (with brain and thorax tumor locations), the ML model achieved 100% specificity and 98.9% sensitivity. However, for more complex RT plans, specificity falls to 87%. For these complex RT plans, an innovative QA classification method using DHL was developed and achieved a sensitivity of 100% and a specificity of 97.72%. Conclusions. The ML and DHL models predicted QA results with a high degree of accuracy. Our predictive QA online platform is offering substantial time savings in terms of accelerator occupancy and working time.

Details

ISSN :
20754418
Volume :
13
Database :
OpenAIRE
Journal :
Diagnostics
Accession number :
edsair.doi.dedup.....d31076fc9e89ce46da253235ad95aead
Full Text :
https://doi.org/10.3390/diagnostics13050943