Back to Search
Start Over
Reductivity of the automorphism group of K-polystable Fano varieties
- Source :
- Springer Berlin Heidelberg
- Publication Year :
- 2019
- Publisher :
- arXiv, 2019.
-
Abstract
- We prove that K-polystable log Fano pairs have reductive automorphism groups. In fact, we deduce this statement by establishing more general results concerning the S-completeness and $\Theta$-reductivity of the moduli of K-semistable log Fano pairs. Assuming the conjecture that K-semistability is an open condition, we prove that the Artin stack parametrizing K-semistable Fano varieties admits a separated good moduli space.<br />Comment: 32 pages. Final version. To appear in Inventiones Math
- Subjects :
- Mathematics - Differential Geometry
Statement (computer science)
Automorphism group
Pure mathematics
Conjecture
General Mathematics
010102 general mathematics
Fano plane
Automorphism
01 natural sciences
Moduli
Moduli space
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Differential Geometry (math.DG)
0103 physical sciences
FOS: Mathematics
010307 mathematical physics
0101 mathematics
Mathematics::Symplectic Geometry
Algebraic Geometry (math.AG)
Mathematics
Stack (mathematics)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Springer Berlin Heidelberg
- Accession number :
- edsair.doi.dedup.....d2fabbf7aa9efcacab23588ee99fbeb2
- Full Text :
- https://doi.org/10.48550/arxiv.1906.03122