Back to Search Start Over

Comparative Study and Limits of Different Level-Set Formulations for the Modeling of Anisotropic Grain Growth

Authors :
Nathalie Bozzolo
Julien Fausty
Brayan Murgas
Marc Bernacki
Sebastian Florez
Centre de Mise en Forme des Matériaux (CEMEF)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Chaire DIGIMU
ANR-16-CHIN-0001,DIGIMU,Développement d'un cadre numérique global et innovant pour la modélisation des évolutions microstructurales à l'œuvre dans les procédés industriels de mise en forme des alliages métalliques.(2016)
Source :
Materials, Volume 14, Issue 14, Materials, MDPI, 2021, 14 (14), pp.3883. ⟨10.3390/ma14143883⟩, Materials, Vol 14, Iss 3883, p 3883 (2021)
Publication Year :
2021
Publisher :
Multidisciplinary Digital Publishing Institute, 2021.

Abstract

International audience; In this study, four different finite element level-set (FE-LS) formulations are compared for the modeling of grain growth in the context of polycrystalline structures and, moreover, two of them are presented for the first time using anisotropic grain boundary (GB) energy and mobility. Mean values and distributions are compared using the four formulations. First, we present the strong and weak formulations for the different models and the crystallographic parameters used at the mesoscopic scale. Second, some Grim Reaper analytical cases are presented and compared with the simulation results, and the evolutions of individual multiple junctions are followed. Additionally, large-scale simulations are presented. Anisotropic GB energy and mobility are respectively defined as functions of the mis-orientation/inclination and disorientation. The evolution of the disorientation distribution function (DDF) is computed, and its evolution is in accordance with prior works. We found that the formulation called “Anisotropic” is the more physical one, but it could be replaced at the mesoscopic scale by an isotropic formulation for simple microstructures presenting an initial Mackenzie-type DDF.

Details

Language :
English
ISSN :
19961944
Database :
OpenAIRE
Journal :
Materials
Accession number :
edsair.doi.dedup.....d2d0cbc77471cfa5a15ad0d488e7fb34
Full Text :
https://doi.org/10.3390/ma14143883