Back to Search
Start Over
Foncteur de Picard d'un champ algébrique
- Source :
- Mathematische Annalen, Mathematische Annalen, Springer Verlag, 2009, 343 (3), pp.541-602. ⟨10.1007/s00208-008-0282-8⟩
- Publication Year :
- 2009
- Publisher :
- HAL CCSD, 2009.
-
Abstract
- 62 pages, in French; International audience; In this article we study the Picard functor and the Picard stack of an algebraic stack. We give a new and direct proof of the representability of the Picard stack. We prove that it is quasi-separated, and that the connected component of the identity is proper when the fibers of X are geometrically normal. We study some examples of Picard functors of classical stacks. In an appendix, we review the lisse-étale cohomology of abelian sheaves on an algebraic stack.
- Subjects :
- Connected component
Pure mathematics
Mathematics(all)
Functor
General Mathematics
010102 general mathematics
Picard stack
Picard functor
01 natural sciences
Cohomology
Mathematics - Algebraic Geometry
Identity (mathematics)
Mathematics::Algebraic Geometry
algebraic stacks
Mathematics::K-Theory and Homology
Mathematics::Category Theory
0103 physical sciences
Picard group
Direct proof
010307 mathematical physics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
0101 mathematics
Abelian group
Stack (mathematics)
Mathematics
Subjects
Details
- Language :
- French
- ISSN :
- 00255831 and 14321807
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen, Mathematische Annalen, Springer Verlag, 2009, 343 (3), pp.541-602. ⟨10.1007/s00208-008-0282-8⟩
- Accession number :
- edsair.doi.dedup.....d237237d48d84a73eaadd7bfe167c44d
- Full Text :
- https://doi.org/10.1007/s00208-008-0282-8⟩