Back to Search Start Over

Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog

Authors :
Janet M. Storey
Zhenhong Li
Kenneth B. Storey
Source :
Cryobiology.
Publication Year :
2022

Abstract

The wood frog, Rana sylvatica (aka Lithobates sylvaticus) is the main model for studies of natural freeze tolerance among amphibians living in seasonally cold climates. During freezing, ∼65% of total body water can be converted to extracellular ice and this imposes both dehydration and hypoxia/anoxia stresses on cells. The current study analyzed the responses of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1), a crucial oxygen-sensitive regulator of gene expression, to freezing, anoxia or dehydration stresses, examining six tissues of wood frogs (liver, skeletal muscle, brain, heart, kidney, skin). RT-PCR revealed a rapid elevation hif-1α transcript levels within 2 h of freeze initiation in both liver and brain and elevated levels of both mRNA and protein in liver and muscle after 24 h frozen. However, both transcript and protein levels reverted to control values after thawing except for HIF-1 protein in liver that dropped to ∼60% of control. Independent exposures of wood frogs to anoxia or dehydration stresses (two components of freezing) also triggered upregulation of hif-1α transcripts and/or HIF-1α protein in liver and kidney with variable responses in other tissues. The results show active modulation of HIF-1 in response to freezing, anoxia and dehydration stresses and implicate this transcription factor as a contributor to the regulation of metabolic adaptations needed for long term survival of wood frogs in the ischemic frozen state.

Details

ISSN :
10902392
Database :
OpenAIRE
Journal :
Cryobiology
Accession number :
edsair.doi.dedup.....d21aa47448c0dd8b5ad75a48d03e1a54