Back to Search Start Over

Online Trajectory Optimization Using Inexact Gradient Feedback for Time-Varying Environments

Authors :
Ketan Rajawat
Marceau Coupechoux
Amrit Singh Bedi
Mohan Krishna Nutalapati
Indian Institute of Technology Kanpur (IIT Kanpur)
Réseaux, Mobilité et Services (RMS)
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Laboratory of Information, Network and Communication Sciences (LINCS)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU)
Institut Polytechnique de Paris (IP Paris)
Département Informatique et Réseaux (INFRES)
Télécom ParisTech
Source :
IEEE Transactions on Signal Processing, IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2020, 68, pp.4824-4838. ⟨10.1109/TSP.2020.3015276⟩, IEEE Transactions on Signal Processing, 2020, 68, pp.4824-4838. ⟨10.1109/TSP.2020.3015276⟩
Publication Year :
2020

Abstract

This paper considers the problem of online trajectory design under time-varying environments. We formulate the general trajectory optimization problem within the framework of time-varying constrained convex optimization and proposed a novel version of the online gradient ascent algorithm for such problems. Moreover, the gradient feedback is noisy and allows us to use the proposed algorithm for a range of practical applications where it is difficult to acquire the true gradient. In contrast to the most available literature, we present the offline sublinear regret of the proposed algorithm up to the path length variations of the optimal offline solution, the cumulative gradient, and the error in the gradient variations. Furthermore, we establish a lower bound on the offline dynamic regret, which defines the optimality of any trajectory. To show the efficacy of the proposed algorithm, we consider two practical problems of interest. First, we consider a device to device (D2D) communications setting, and the goal is to design a user trajectory while maximizing its connectivity to the internet. The second problem is associated with the online planning of energy-efficient trajectories for unmanned surface vehicles (USV) under strong disturbances in ocean environments with both static and dynamic goal locations. The detailed simulation results demonstrate the significance of the proposed algorithm on synthetic and real data sets. Video on the real-world datasets can be found at {https://www.youtube.com/watch?v=FcRqqWtpf\_0}<br />arXiv admin note: text overlap with arXiv:1804.04860

Details

Language :
English
ISSN :
1053587X
Database :
OpenAIRE
Journal :
IEEE Transactions on Signal Processing, IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2020, 68, pp.4824-4838. ⟨10.1109/TSP.2020.3015276⟩, IEEE Transactions on Signal Processing, 2020, 68, pp.4824-4838. ⟨10.1109/TSP.2020.3015276⟩
Accession number :
edsair.doi.dedup.....d2152ce4dc3ac1487332018191626f80