Back to Search Start Over

The acute phase response in the rodent

Authors :
Wai‐Ping ‐P Fung
Felice A. De Jong
Tim Thomas
Helen Birch
Phillip W. Dickson
Anna Tsykin
Angela R. Aldred
Julie Milland
Gerhard Schreiber
Tim J Cole
Source :
Annals of the New York Academy of Sciences. 557
Publication Year :
1989

Abstract

In the rodent, the general response to acute inflammation and tissue damage is characterized by a complex rearrangement in the pattern of concentrations of proteins in the plasma leading to an increase in the sedimentation rate of erythrocytes, an increase in leukocyte concentration in the bloodstream, and a decrease in the hematocrit. Body temperature changes only slightly or not at all. The reasons for the change in plasma concentrations of proteins are changes in their rates of synthesis in the liver. Degradation of plasma proteins is not affected. The details of the acute phase response evolved in the interaction of species with their environment. Therefore, it is not surprising to find differences in the details of the acute phase response among species. For example, alpha 2-macroglobulin is a strongly positive acute phase reactant in the rat, but not in the mouse; C-reactive protein is a strongly positive acute phase protein in the mouse, but is not found in the rat. An inducible acute phase cysteine proteinase inhibitor system, which has evolved from a primordial kininogen gene, has been observed so far only in the rat. The changes in the synthesis rates of acute phase proteins during inflammation are closely reflected by corresponding changes in intracellular mRNA levels. In the liver, the capacity to induce the acute phase pattern of synthesis and secretion of plasma proteins probably develops around birth. Changes in mRNA levels are brought about by changes in transcription rates or by changes in mRNA stability. Kinetics of mRNA changes during the acute phase response differ for individual proteins. The main signal compound for eliciting the acute phase response in liver seems to be interleukin-6/interferon-beta 2/hepatocyte stimulating factor, whereas interleukin-1 leads to typical acute phase changes in mRNA levels only for alpha 1-acid glycoprotein, albumin, and transthyretin. Plasma protein genes are expressed in various extrahepatic tissues, such as the choroid plexus, the yolk sac, the placenta, the seminal vesicles, and other sites. All these tissues are involved in maintaining protein homeostasis in associated extracellular compartments by synthesis and secretion of proteins. Synthesis and secretion of plasma proteins in paracompartmental organs other than the liver is not influenced by the acute phase stimuli.

Details

ISSN :
00778923
Volume :
557
Database :
OpenAIRE
Journal :
Annals of the New York Academy of Sciences
Accession number :
edsair.doi.dedup.....d20f939b1ac6242bd774acb8665eb408