Back to Search Start Over

Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura

Authors :
Marta Pascual
Margarida Gaspar de Matos
Josiane Santos
Michael R. Rose
Pedro Simões
Universitat de Barcelona
Source :
BMC Evolutionary Biology, Vol 9, Iss 1, p 133 (2009), Dipòsit Digital de la UB, Universidad de Barcelona, BMC Evolutionary Biology, Vol 8, Iss 1, p 66 (2008), Recercat. Dipósit de la Recerca de Catalunya, instname, Simoes, Pedro; Pascual, Marta; Santos, Josiane; Rose, Michael R; & Matos, Margarida. (2008). Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura. BMC Evolutionary Biology, 8, 66-66. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/63b9p8ws, Simoes, Pedro; Pascual, Marta; Santos, Josiane; Rose, Michael R; & Matos, Margarida. (2008). Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura. BMC Evolutionary Biology, 8, 66-66. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/1756c1qb, BMC Evolutionary Biology
Publisher :
Springer Nature

Abstract

Background Natural selection and genetic drift are major forces responsible for temporal genetic changes in populations. Furthermore, these evolutionary forces may interact with each other. Here we study the impact of an ongoing adaptive process at the molecular genetic level by analyzing the temporal genetic changes throughout 40 generations of adaptation to a common laboratory environment. Specifically, genetic variability, population differentiation and demographic structure were compared in two replicated groups of Drosophila subobscura populations recently sampled from different wild sources. Results We found evidence for a decline in genetic variability through time, along with an increase in genetic differentiation between all populations studied. The observed decline in genetic variability was higher during the first 14 generations of laboratory adaptation. The two groups of replicated populations showed overall similarity in variability patterns. Our results also revealed changing demographic structure of the populations during laboratory evolution, with lower effective population sizes in the early phase of the adaptive process. One of the ten microsatellites analyzed showed a clearly distinct temporal pattern of allele frequency change, suggesting the occurrence of positive selection affecting the region around that particular locus. Conclusion Genetic drift was responsible for most of the divergence and loss of variability between and within replicates, with most changes occurring during the first generations of laboratory adaptation. We also found evidence suggesting a selective sweep, despite the low number of molecular markers analyzed. Overall, there was a similarity of evolutionary dynamics at the molecular level in our laboratory populations, despite distinct genetic backgrounds and some differences in phenotypic evolution.

Details

Language :
English
ISSN :
14712148
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
BMC Evolutionary Biology
Accession number :
edsair.doi.dedup.....d1b09dda73f2fd6dad801b07fa325b4e
Full Text :
https://doi.org/10.1186/1471-2148-9-133