Back to Search Start Over

A context dependent pair hidden Markov model for statistical alignment

Authors :
Ana Arribas-Gil
Catherine Matias
Departamento de Estadistica
Universidad Carlos III de Madrid [Madrid]
Laboratoire Statistique et Génome (SG)
Institut National de la Recherche Agronomique (INRA)-Université d'Évry-Val-d'Essonne (UEVE)-Centre National de la Recherche Scientifique (CNRS)
Universidad Carlos III de Madrid [Madrid] (UC3M)
Spanish Ministry of Science and Innovation [ECO2008-05080, HI2008-0069, JC2010-0057]
Region of Madrid, Spain [CCG10-UC3M/HUM-5114]
Source :
Statistical Applications in Genetics and Molecular Biology, Statistical Applications in Genetics and Molecular Biology, De Gruyter, 2012, 11 (1), pp.Pages 1-29. ⟨10.2202/1544-6115.1733⟩, Statistical Applications in Genetics and Molecular Biology, 2012, 11 (1), pp.Pages 1-29. ⟨10.2202/1544-6115.1733⟩, Scopus-Elsevier
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

International audience; This article proposes a novel approach to statistical alignment of nucleotide sequences by introducing a context dependent structure on the substitution process in the underlying evolutionary model. We propose to estimate alignments and context dependent mutation rates relying on the observation of two homologous sequences. The procedure is based on a generalized pair-hidden Markov structure, where conditional on the alignment path, the nucleotide sequences follow a Markov distribution. We use a stochastic approximation expectation maximization (saem) algorithm to give accurate estimators of parameters and alignments. We provide results both on simulated data and vertebrate genomes, which are known to have a high mutation rate from CG dinucleotide. In particular, we establish that the method improves the accuracy of the alignment of a human pseudogene and its functional gene.

Details

Language :
English
ISSN :
15446115
Database :
OpenAIRE
Journal :
Statistical Applications in Genetics and Molecular Biology, Statistical Applications in Genetics and Molecular Biology, De Gruyter, 2012, 11 (1), pp.Pages 1-29. ⟨10.2202/1544-6115.1733⟩, Statistical Applications in Genetics and Molecular Biology, 2012, 11 (1), pp.Pages 1-29. ⟨10.2202/1544-6115.1733⟩, Scopus-Elsevier
Accession number :
edsair.doi.dedup.....d18f5bb3fde5dc042cf96d48057b46e7
Full Text :
https://doi.org/10.2202/1544-6115.1733⟩