Back to Search Start Over

Building protoplanetary disks from the molecular cloud: redefining the disk timeline

Authors :
Joao Marques
Kévin Baillié
Laurent Piau
Institut de Mécanique Céleste et de Calcul des Ephémérides (IMCCE)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Lille-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Centre National d'Études Spatiales [Toulouse] (CNES)
Institut d'astrophysique spatiale (IAS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
Laboratoire pour l'utilisation des lasers intenses (LULI)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Astronomy and Astrophysics-A&A, Astronomy and Astrophysics-A&A, 2019, 624, pp.A93. ⟨10.1051/0004-6361/201730677⟩, Astronomy and Astrophysics-A&A, 2019, ⟨10.1051/0004-6361/201730677⟩, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, ⟨10.1051/0004-6361/201730677⟩, Astronomy and Astrophysics-A&A, EDP Sciences, 2019, 624, pp.A93. ⟨10.1051/0004-6361/201730677⟩
Publication Year :
2019
Publisher :
EDP Sciences, 2019.

Abstract

We study the formation of the protoplanetary disk by the collapse of a primordial molecular cloud, and how its evolution leads to the selection of specific types of planets. We use a hydrodynamical code that accounts for the dynamics, thermodynamics, geometry, and composition of the disk to numerically model its evolution as it is fed by the infalling cloud material. As the mass accretion rate of the disk onto the star determines its growth, we can calculate the stellar characteristics by interpolating its radius, luminosity, and temperature over the stellar mass from pre-calculated stellar evolution models. The density and midplane temperature of the disk then allow us to model the interactions between the disk and potential planets and determine their migration. At the end of the collapse phase, when the disk reaches its maximum mass, it pursues its viscous spreading, similarly to the evolution from a minimum mass solar nebula (MMSN). In addition, we establish a timeline equivalence between the MMSN and a "collapse-formed disk" that would be older by about 2 Myr. We can save various types of planets from a fatal type-I inward migration: in particular, planetary embryos can avoid falling on the star by becoming trapped at the heat transition barriers and at most sublimation lines (except the silicates one). One of the novelties concerns the possible trapping of putative giant planets around a few astronomical units from the star around the end of the infall. Moreover, trapped planets may still follow the traps outward during the collapse phase and inward after it. Finally, this protoplanetary disk formation model shows the early possibilities of trapping planetary embryos at disk stages that are anterior by a few million years to the initial state of the MMSN approximation.<br />14 pages, 11 figures, accepted in A&A 2019

Details

ISSN :
14320746 and 00046361
Volume :
624
Database :
OpenAIRE
Journal :
Astronomy & Astrophysics
Accession number :
edsair.doi.dedup.....d149c35518baf623ffb613addca00298