Back to Search Start Over

Numerical solution of the viscous flows in a network of thin tubes: equations on the graph

Authors :
Grigory Panasenko
Frédéric Chardard
Éric Canon
Olga Štikonienė
Modélisation mathématique, calcul scientifique (MMCS)
Institut Camille Jordan [Villeurbanne] (ICJ)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Department of Mathematics and Informatics [Vilnius]
Vilnius University [Vilnius]
Source :
Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2021, 435, pp.110262. ⟨10.1016/j.jcp.2021.110262⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

A non-stationary flow in a network of thin tubes is considered. Its one-dimensional approximation was proposed in a paper by G. Panasenko and K. Pileckas, Flows in a tube structure: equation on the graph (Panasenko and Pileckas, 2014 [19] ). It consists of a set of equations with weakly singular kernels, on a graph, for the macroscopic pressure. A new difference scheme for this problem is proposed. Several variants are discussed. Stability and convergence are carefully investigated, theoretically and numerically. In addition, numerical results are compared to the direct numerical solution of the full dimension Navier-Stokes equations.

Details

Language :
English
ISSN :
00219991 and 10902716
Database :
OpenAIRE
Journal :
Journal of Computational Physics, Journal of Computational Physics, Elsevier, 2021, 435, pp.110262. ⟨10.1016/j.jcp.2021.110262⟩
Accession number :
edsair.doi.dedup.....d105d0f0ae9a7361fca3044740cfe5c0
Full Text :
https://doi.org/10.1016/j.jcp.2021.110262⟩