Back to Search Start Over

Fe2O3-TiO2Nano-heterostructure Photoanodes for Highly Efficient Solar Water Oxidation

Authors :
Stuart Turner
Tero-Petri Ruoko
Alberto Gasparotto
Chiara Maccato
Helge Lemmetyinen
Gustaaf Van Tendeloo
Yakup Gönüllü
Davide Barreca
Michael E. A. Warwick
Kimmo Kaunisto
Sanjay Mathur
Cinzia Sada
Giorgio Carraro
Laura Borgese
Elza Bontempi
Tampere University
Department of Chemistry and Bioengineering
Tampere University of Technology
Research group: Supramolecular photochemistry
Source :
Advanced Materials Interfaces, Advanced materials interfaces 2 (2015): 1500313-1–1500313-11. doi:10.1002/admi.201500313, info:cnr-pdr/source/autori:Barreca D.; Carraro G.; Gasparotto A.; Maccato C.; Warwick M.E.A.; Kaunisto K.; Sada C.; Turner S.; Gönüllü Y.; Ruoko T.-P.; Borgese L.; Bontempi E.; Van Tendeloo G.; Lemmetyinen H.; Mathur S./titolo:Fe2O3-TiO2 nano-heretostructure photoanodes for highly efficient solar water oxidation/doi:10.1002%2Fadmi.201500313/rivista:Advanced materials interfaces/anno:2015/pagina_da:1500313-1/pagina_a:1500313-11/intervallo_pagine:1500313-1–1500313-11/volume:2
Publication Year :
2015
Publisher :
Wiley, 2015.

Abstract

Harnessing solar energy for the production of clean hydrogen by photo-electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3-TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm-2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one-sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α-Fe2O3) nanostructures fabricated by plasma enhanced-chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3-TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico-physical investigation, as well as by the study of photo-generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large-scale generation of renewable energy. acceptedVersion

Details

ISSN :
21967350
Volume :
2
Database :
OpenAIRE
Journal :
Advanced Materials Interfaces
Accession number :
edsair.doi.dedup.....d0fe933620bdee89b1e8d7c93bde78d7