Back to Search Start Over

Sugar phosphate activation of the stress sensor eIF2B

Authors :
Dan Eaton
Vincent S Stoll
Sean R. Hackett
Jared Rutter
Jin-Mi Heo
Clint Remarcik
Rinku Jain
Qi Hao
Carmela Sidrauski
Lauren LeBon
Kevin G. Hicks
Yao Liang Wong
Boguslaw Nocek
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.<br />The activity of translation initiation factor eIF2B is known to be modulated through stress-responsive phosphorylation of its substrate eIF2. Here, the authors uncover the regulation of eIF2B by the binding of sugar phosphates, suggesting a link between nutrient status and the rate of protein synthesis.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....d0dbbd89a9c7dc04cc203338e578d32d