Back to Search Start Over

Approximative properties of Fourier-Meixner sums

Authors :
R. M. Gadzhimirzaev
Source :
Проблемы анализа, Vol 7(25), Iss 1, Pp 23-40 (2018)
Publication Year :
2018
Publisher :
Petrozavodsk State University, 2018.

Abstract

We consider the problem of approximation of discrete functions f = f(x) defined on the set Ω_δ = {0, δ, 2δ, . . .}, where δ =1/N, N > 0, using the Fourier sums in the modified Meixner polynomials M_(α;n,N)(x) = M(α;n)(Nx) (n = 0, 1, . . .), which for α > -1 constitute an orthogonal system on the grid Ωδ with the weight function w(x) = e^-(x)*Γ(Nx + α + 1)/Γ(Nx + 1). We study the approximative properties of partial sums of Fourier series in polynomials M(α_n,N)(x), with particular attention paid to estimating their Lebesgue function.

Details

ISSN :
23063432
Volume :
25
Database :
OpenAIRE
Journal :
Issues of Analysis
Accession number :
edsair.doi.dedup.....d0b1dbaad961cd3d9f2d444f96fda671
Full Text :
https://doi.org/10.15393/j3.art.2018.4390