Back to Search Start Over

Interactions Among Brain-Derived Neurotrophic Factor and Neuroimmune Pathways Are Key Components of the Major Psychiatric Disorders

Authors :
Nikolay Mehterov
Danail Minchev
Maria Gevezova
Victoria Sarafian
Michael Maes
Source :
Molecular Neurobiology. 59:4926-4952
Publication Year :
2022
Publisher :
Springer Science and Business Media LLC, 2022.

Abstract

The purpose of this review is to summarize the current knowledge regarding the reciprocal associations between brain-derived neurotrophic factor (BDNF) and immune-inflammatory pathways and how these links may explain the involvement of this neurotrophin in the immune pathophysiology of mood disorders and schizophrenia. Toward this end, we delineated the protein-protein interaction (PPI) network centered around BDNF and searched PubMed, Scopus, Google Scholar, and Science Direct for papers dealing with the involvement of BDNF in the major psychosis, neurodevelopment, neuronal functions, and immune-inflammatory and related pathways. The PPI network was built based on the significant interactions of BDNF with neurotrophic (NTRK2, NTF4, and NGFR), immune (cytokines, STAT3, TRAF6), and cell-cell junction (CTNNB, CDH1) DEPs (differentially expressed proteins). Enrichment analysis shows that the most significant terms associated with this PPI network are the tyrosine kinase receptor (TRKR) and Src homology region two domain-containing phosphatase-2 (SHP2) pathways, tyrosine kinase receptor signaling pathways, positive regulation of kinase and transferase activity, cytokine signaling, and negative regulation of the immune response. The participation of BDNF in the immune response and its interactions with neuroprotective and cell-cell adhesion DEPs is probably a conserved regulatory process which protects against the many detrimental effects of immune activation and hyperinflammation including neurotoxicity. Lowered BDNF levels in mood disorders and schizophrenia (a) are associated with disruptions in neurotrophic signaling and activated immune-inflammatory pathways leading to neurotoxicity and (b) may interact with the reduced expression of other DEPs (CTNNB1, CDH1, or DISC1) leading to multiple aberrations in synapse and axonal functions.

Details

ISSN :
15591182 and 08937648
Volume :
59
Database :
OpenAIRE
Journal :
Molecular Neurobiology
Accession number :
edsair.doi.dedup.....d09c7b778f010dc5de7188d612dbcd3e