Back to Search Start Over

FGF2 engineered SPIONs attenuate tumor stroma and potentiate the effect of chemotherapy in 3D heterospheroidal model of pancreatic tumor

Authors :
Mardhian, Deby Fajar
Vrynas, Aggelos
Storm, Gert
Bansal, Ruchi
Prakash, Jai
Afd Pharmaceutics
Pharmaceutics
Biomaterials Science and Technology
TechMed Centre
Medical Cell Biophysics
Afd Pharmaceutics
Pharmaceutics
Source :
Nanotheranostics, 4(1), 26-39. Ivyspring International Publishers, Nanotheranostics, 4(1), 26. Ivyspring International Publishers, Nanotheranostics
Publication Year :
2020
Publisher :
Ivyspring International Publisher, 2020.

Abstract

Pancreatic ductal adenocarcinoma (PDAC), characterized with abundant tumor stroma, is a highly malignant tumor with poor prognosis. The tumor stroma largely consists of cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM), and is known to promote tumor growth and progression as well as acts as a barrier to chemotherapy. Inhibition of tumor stroma is highly crucial to induce the effect of chemotherapy. In this study, we delivered fibroblast growth factor 2 (FGF2) to human pancreatic stellate cells (hPSCs), the precursors of CAFs, using superparamagnetic iron oxide nanoparticles (SPIONs). FGF2 was covalently conjugated to functionalized PEGylated dextran-coated SPIONs. FGF2-SPIONs significantly reduced TGF-β induced hPSCs differentiation (α-SMA and collagen-1 expression) by inhibiting pSmad2/3 signaling and inducing ERK1/2 activity, as shown with western blot analysis. Then, we established a stroma-rich self-assembling 3D heterospheroid model by co-culturing PANC-1 and hPSCs in 3D environment. We found that FGF2-SPIONs treatment alone inhibited the tumor stroma-induced spheroid growth. In addition, they also potentiated the effect of gemcitabine, as shown by measuring the spheroid size and ATP content. These effects were attributed to the reduced expression of the hPSC activation and differentiation marker, α-SMA. Furthermore, to demonstrate an application of SPIONs, we applied an external magnetic field to spheroids while incubated with FGF2-SPIONs. This resulted in an enhanced effect of gemcitabine in our 3D model. In conclusion, this study presents a novel approach to target FGF2 to tumor stroma using SPIONs and thereby enhancing the effect of gemcitabine as demonstrated in the complex 3D tumor spheroid model.

Details

ISSN :
22067418
Volume :
4
Database :
OpenAIRE
Journal :
Nanotheranostics
Accession number :
edsair.doi.dedup.....cffd078fe73b58fc120abfcfe3992765
Full Text :
https://doi.org/10.7150/ntno.38092