Back to Search Start Over

Homogeneous Observers for Projected Quadratic Partial Differential Equations

Authors :
Andrey Polyakov
Sergiy Zhuk
IBM Research - Ireland
IBM
Finite-time control and estimation for distributed systems (VALSE)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
CDC, IEEE Conference on Decision and Control, IEEE Conference on Decision and Control, Dec 2020, Jesu Island, South Korea
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

International audience; The paper proposes a new homogeneous observer for finite-dimensional projections of quadratic homogeneous hyperbolic PDEs with compact state space. The design relies upon new sufficient conditions for fixed-time convergence of observer's gain, described as a solution of a non-linear homogeneous matrix differential equations, towards an ellipsoid in the space of symmetric non-negative matrices. Convergence of the observer is analyzed, and a numerical convergence test is proposed: numerical experiments confirm the test on ODEs obtained by finite-difference discretization of Burgers-Hopf equation.

Details

Database :
OpenAIRE
Journal :
2020 59th IEEE Conference on Decision and Control (CDC)
Accession number :
edsair.doi.dedup.....cff6d8f1e5b33e1db29d693e87459747
Full Text :
https://doi.org/10.1109/cdc42340.2020.9304295