Back to Search
Start Over
Analysis of the phase stability of LiMO2 layered oxides (M = Co, Mn, Ni)
- Source :
- Crystals, Volume 10, Issue 6, Crystals (Basel) 10 (2020). doi:10.3390/cryst10060526, info:cnr-pdr/source/autori:Mariarosaria Tuccillo, Oriele Palumbo, Michele Pavone, Ana Belen Muñoz-García, Annalisa Paolone and Sergio Brutti/titolo:Analysis of the phase stability of LiMO2 layered oxides (M=Co, Mn, Ni)/doi:10.3390%2Fcryst10060526/rivista:Crystals (Basel)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:10, Crystals, Vol 10, Iss 526, p 526 (2020)
- Publication Year :
- 2020
-
Abstract
- Transition-metal (TM) layered oxides have been attracting enormous interests in recent decades because of their excellent functional properties as positive electrode materials in lithium-ion batteries. In particular LiCoO2 (LCO), LiNiO2 (LNO) and LiMnO2 (LMO) are the structural prototypes of a large family of complex compounds with similar layered structures incorporating mixtures of transition metals. Here, we present a comparative study on the phase stability of LCO, LMO and LNO by means of first-principles calculations, considering three different lattices for all oxides, i.e., rhombohedral (hR12), monoclinic (mC8) and orthorhombic (oP8). We provide a detailed analysis&mdash<br />at the same level of theory&mdash<br />on geometry, electronic and magnetic structures for all the three systems in their competitive structural arrangements. In particular, we report the thermodynamics of formation for all ground state and metastable phases of the three compounds for the first time. The final Gibbs Energy of Formation values at 298 K from elements are: LCO(hR12) &minus<br />672 &plusmn<br />8 kJ mol&minus<br />1<br />LCO(mC8) &minus<br />655 &plusmn<br />LCO(oP8) &minus<br />607 &plusmn<br />LNO(hR12) &minus<br />548 &plusmn<br />LNO(mC8) &minus<br />557 &plusmn<br />LNO(oP8) &minus<br />LMO(hR12) &minus<br />765 &plusmn<br />10 kJ mol&minus<br />LMO(mC8) &minus<br />779 &plusmn<br />LMO(oP8) &minus<br />780 &plusmn<br />1. These values are of fundamental importance for the implementation of reliable multi-phase thermodynamic modelling of complex multi-TM layered oxide systems and for the understanding of thermodynamically driven structural phase degradations in real applications such as lithium-ion batteries.
- Subjects :
- Materials science
General Chemical Engineering
Oxide
Li-ion batteries
02 engineering and technology
01 natural sciences
DFT
Li-ion batterie
Inorganic Chemistry
chemistry.chemical_compound
symbols.namesake
Transition metal
Metastability
Phase stability
lcsh:QD901-999
General Materials Science
layered phases
010405 organic chemistry
Positive electrode materials
021001 nanoscience & nanotechnology
Condensed Matter Physics
0104 chemical sciences
Gibbs free energy
chemistry
phase stability
positive electrode materials
symbols
Physical chemistry
Orthorhombic crystal system
Layered phase
lcsh:Crystallography
0210 nano-technology
Ground state
Monoclinic crystal system
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Crystals, Volume 10, Issue 6, Crystals (Basel) 10 (2020). doi:10.3390/cryst10060526, info:cnr-pdr/source/autori:Mariarosaria Tuccillo, Oriele Palumbo, Michele Pavone, Ana Belen Muñoz-García, Annalisa Paolone and Sergio Brutti/titolo:Analysis of the phase stability of LiMO2 layered oxides (M=Co, Mn, Ni)/doi:10.3390%2Fcryst10060526/rivista:Crystals (Basel)/anno:2020/pagina_da:/pagina_a:/intervallo_pagine:/volume:10, Crystals, Vol 10, Iss 526, p 526 (2020)
- Accession number :
- edsair.doi.dedup.....cfce529b637b2adf930c33bcd3da0d50
- Full Text :
- https://doi.org/10.3390/cryst10060526