Back to Search Start Over

Convergence to a propagating front in a degenerate Fisher-KPP equation with advection

Authors :
Elisabeth Logak
Matthieu Alfaro
Institut de Mathématiques et de Modélisation de Montpellier (I3M)
Centre National de la Recherche Scientifique (CNRS)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université de Montpellier (UM)
Analyse, Géométrie et Modélisation (AGM - UMR 8088)
CY Cergy Paris Université (CY)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Mathematical Analysis and Applications, Journal of Mathematical Analysis and Applications, Elsevier, 2012, 387 (1), pp.251-266. ⟨10.1016/j.jmaa.2011.08.068⟩
Publisher :
Elsevier Inc.

Abstract

International audience; We consider a Fisher-KPP equation with density-dependent diffusion and advection, arising from a chemotaxis-growth model. We study its behavior as a small parameter, related to the thickness of a diffuse interface, tends to zero. We analyze, for small times, the emergence of transition layers induced by a balance between reaction and drift effects. Then we investigate the propagation of the layers. Convergence to a free-boundary limit problem is proved and a sharp estimate of the thickness of the layers is provided.

Details

Language :
English
ISSN :
0022247X and 10960813
Issue :
1
Database :
OpenAIRE
Journal :
Journal of Mathematical Analysis and Applications
Accession number :
edsair.doi.dedup.....cfc2e7b03bfe5a438bb08931ee558936
Full Text :
https://doi.org/10.1016/j.jmaa.2011.08.068