Back to Search Start Over

Statistical Entropy of a BTZ Black Hole from Loop Quantum Gravity

Authors :
Karim Noui
Marc Geiller
Alejandro Perez
Ernesto Frodden
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire de Mathématiques et Physique Théorique (LMPT)
Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of High Energy Physics, Journal of High Energy Physics, 2013, 2013 (5), pp.139. ⟨10.1007/JHEP05(2013)139⟩, Journal of High Energy Physics, Springer, 2013, 2013 (5), pp.139. ⟨10.1007/JHEP05(2013)139⟩
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

We compute the statistical entropy of a BTZ black hole in the context of three-dimensional Euclidean loop quantum gravity with a cosmological constant $\Lambda$. As in the four-dimensional case, a quantum state of the black hole is characterized by a spin network state. Now however, the underlying colored graph $\Gamma$ lives in a two-dimensional spacelike surface $\Sigma$, and some of its links cross the black hole horizon, which is viewed as a circular boundary of $\Sigma$. Each link $\ell$ crossing the horizon is colored by a spin $j_\ell$ (at the kinematical level), and the length $L$ of the horizon is given by the sum $L=\sum_\ell L_\ell$ of the fundamental length contributions $L_\ell$ carried by the spins $j_\ell$ of the links $\ell$. We propose an estimation for the number $N^\text{BTZ}_\Gamma(L,\Lambda)$ of the Euclidean BTZ black hole microstates (defined on a fixed graph $\Gamma$) based on an analytic continuation from the case $\Lambda>0$ to the case $\Lambda<br />Comment: 14 pages. 1 figure. Paragraph added on page 7 to clarify the horizon condition

Details

Language :
English
ISSN :
11266708 and 10298479
Database :
OpenAIRE
Journal :
Journal of High Energy Physics, Journal of High Energy Physics, 2013, 2013 (5), pp.139. ⟨10.1007/JHEP05(2013)139⟩, Journal of High Energy Physics, Springer, 2013, 2013 (5), pp.139. ⟨10.1007/JHEP05(2013)139⟩
Accession number :
edsair.doi.dedup.....cfc0d3b8d9ff262fee86a8cb0b49cab4
Full Text :
https://doi.org/10.1007/JHEP05(2013)139⟩