Back to Search Start Over

Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates

Authors :
Ganqing Jiang
Martin J. Kennedy
Nicholas Christie-Blick
Source :
Nature. 426(6968)
Publication Year :
2003

Abstract

The Earth's most severe glaciations are thought to have occurred about 600 million years ago, in the late Neoproterozoic era1,2. A puzzling feature of glacial deposits from this interval is that they are overlain by 1–5-m-thick ‘cap carbonates’ (particulate deep-water marine carbonate rocks) associated with a prominent negative carbon isotope excursion3,4,5,6,7,8. Cap carbonates have been controversially ascribed to the aftermath of almost complete shutdown of the ocean ecosystems for millions of years during such ice ages—the ‘snowball Earth’ hypothesis4,5. Conversely, it has also been suggested that these carbonate rocks were the result of destabilization of methane hydrates during deglaciation and concomitant flooding of continental shelves and interior basins3. The most compelling criticism of the latter ‘methane hydrate’ hypothesis has been the apparent lack of extreme isotopic variation in cap carbonates inferred locally to be associated with methane seeps. Here we report carbon isotopic and petrographic data from a Neoproterozoic postglacial cap carbonate in south China that provide direct evidence for methane-influenced processes during deglaciation. This evidence lends strong support to the hypothesis that methane hydrate destabilization contributed to the enigmatic cap carbonate deposition and strongly negative carbon isotopic anomalies following Neoproterozoic ice ages. This explanation requires less extreme environmental disturbance than that implied by the snowball Earth hypothesis4,5.

Details

ISSN :
14764687
Volume :
426
Issue :
6968
Database :
OpenAIRE
Journal :
Nature
Accession number :
edsair.doi.dedup.....cfba5264810e2c875a6a2160762117b7