Back to Search Start Over

GOCE gravity gradient data for lithospheric modeling

Authors :
Verena Lieb
S Meekes
Michael Schmidt
S. Gradmann
Jörg Ebbing
Roger Haagmans
Wolfgang Bosch
R A Fattah
Denise Dettmering
J Bouman
M. Fuchs
Source :
International Journal of Applied Earth Observation and Geoinformation, PA, 35, 16-30
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the European Space Agency's (ESA)satellite gravity mission to determine the Earth's mean gravity field. GOCE delivers gravity gradients, anew type of satellite data. We study how these data can improve modeling of the Earth's lithosphere. We discuss the use of the original GOCE gravity gradients versus the use of gravity gradients in grids at satellite altitude or close the Earth's surface and conclude that grids are easier to handle than the original data because one does not have to deal with very different error characteristics of the different gradients, given in a rotating frame at varying heights. The downward continuation to the surface enhances signaland better reflects the near-surface geology. But this does not outweigh the amplification of noise and omission errors, which is why we recommend using the field at mean satellite altitude for lithospheric modeling. The North-East Atlantic region is ideal to analyze the additional value of GOCE gravity gradients because it is a well-studied region in terms of regional geophysics. We calculated the gradient sensitivity for crustal depth slices using a 3D lithospheric model. This reveals that especially interfaces with large density contrasts have a distinct signal in the gravity gradients, but that they are quite insensitive to intra-crustal density sources, which can have quite a large effect on surface gravity data. We also show thatthe satellite gradients have a depth sensitivity well suited to study the upper mantle density structure, making them complementary to gravity and seismic tomography. In the underexplored Rub'al-Khaliarea the GOCE vertical gradient was used to invert for crustal thickness. The updated Moho model givesa good fit to four of the six gradients and independent depths from seismic stations. The Moho modelwas used to update the heat flow model and source rock maturity maps, which are generally consistent with known source rock maturity trends in the surrounding regions. GOCE gradients are therefore usefulto map crustal thickness and deep regional structures for frontier areas. In combination with other data, heat flow can be modeled which is essential for basin maturity evaluation. © 2013 Elsevier B.V.

Details

ISSN :
15698432
Volume :
35
Database :
OpenAIRE
Journal :
International Journal of Applied Earth Observation and Geoinformation
Accession number :
edsair.doi.dedup.....cf51d6a54806e5e3debacc1c19489bb8
Full Text :
https://doi.org/10.1016/j.jag.2013.11.001