Back to Search
Start Over
GOCE gravity gradient data for lithospheric modeling
- Source :
- International Journal of Applied Earth Observation and Geoinformation, PA, 35, 16-30
- Publication Year :
- 2015
- Publisher :
- Elsevier BV, 2015.
-
Abstract
- The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is the European Space Agency's (ESA)satellite gravity mission to determine the Earth's mean gravity field. GOCE delivers gravity gradients, anew type of satellite data. We study how these data can improve modeling of the Earth's lithosphere. We discuss the use of the original GOCE gravity gradients versus the use of gravity gradients in grids at satellite altitude or close the Earth's surface and conclude that grids are easier to handle than the original data because one does not have to deal with very different error characteristics of the different gradients, given in a rotating frame at varying heights. The downward continuation to the surface enhances signaland better reflects the near-surface geology. But this does not outweigh the amplification of noise and omission errors, which is why we recommend using the field at mean satellite altitude for lithospheric modeling. The North-East Atlantic region is ideal to analyze the additional value of GOCE gravity gradients because it is a well-studied region in terms of regional geophysics. We calculated the gradient sensitivity for crustal depth slices using a 3D lithospheric model. This reveals that especially interfaces with large density contrasts have a distinct signal in the gravity gradients, but that they are quite insensitive to intra-crustal density sources, which can have quite a large effect on surface gravity data. We also show thatthe satellite gradients have a depth sensitivity well suited to study the upper mantle density structure, making them complementary to gravity and seismic tomography. In the underexplored Rub'al-Khaliarea the GOCE vertical gradient was used to invert for crustal thickness. The updated Moho model givesa good fit to four of the six gradients and independent depths from seismic stations. The Moho modelwas used to update the heat flow model and source rock maturity maps, which are generally consistent with known source rock maturity trends in the surrounding regions. GOCE gradients are therefore usefulto map crustal thickness and deep regional structures for frontier areas. In combination with other data, heat flow can be modeled which is essential for basin maturity evaluation. © 2013 Elsevier B.V.
- Subjects :
- Gravity (chemistry)
Heat flow determination
Geological Survey Netherlands
Management, Monitoring, Policy and Law
Gravity anomaly
Physics::Geophysics
Gravitational field
Lithosphere
SGE - Sustainable Geo Energy PG - Petroleum Geosciences
Computers in Earth Sciences
2015 Energy
GOCE gravity gradients
Earth-Surface Processes
Litosphere
Global and Planetary Change
Moho
European Combined Geodetic Network
Geophysics
Geo
Surface gravity
Geodesy
Seismic tomography
Satellite
ELSS - Earth, Life and Social Sciences
Geosciences
Geology
Subjects
Details
- ISSN :
- 15698432
- Volume :
- 35
- Database :
- OpenAIRE
- Journal :
- International Journal of Applied Earth Observation and Geoinformation
- Accession number :
- edsair.doi.dedup.....cf51d6a54806e5e3debacc1c19489bb8
- Full Text :
- https://doi.org/10.1016/j.jag.2013.11.001