Back to Search Start Over

Accurate and cost‐effective prediction of HBsAg titer in industrial scale fermentation process of recombinantPichia pastorisby using neural network based soft sensor

Authors :
Seyed Nezamedin Hosseini
Amin Javidanbardan
Maryam Khatami
Source :
Biotechnology and Applied Biochemistry. 66:681-689
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

In the current work, the attempt was made to apply best-fitted artificial neural network (ANN) architecture and the respective training process for predicting final titer of hepatitis B surface antigen (HBsAg), produced intracellularly by recombinant Pichia pastoris Mut+ in the commercial scale. For this purpose, in large-scale fed-batch fermentation, using methanol for HBsAg induction and cell growth, three parameters of average specific growth rate, biomass yield, and dry biomass concentration-in the definite integral form with respect to fermentation time-were selected as input vectors; the final concentration of HBsAg was selected for the ANN output. Used dataset consists of 38 runs from previous batches; feed-forward ANN 3:5:1 with training algorithm of backpropagation based on a Bayesian regularization was trained and tested with a high degree of accuracy. Implementing the verified ANN for predicting the HBsAg titer of the five new fermentation runs, excluded from the dataset, in the full-scale production, the coefficient of regression and root-mean-square error were found to be 0.969299 and 2.716774, respectively. These results suggest that this verified soft sensor could be an excellent alternative for the current relatively expensive and time-intensive analytical techniques such as enzyme-linked immunosorbent assay in the biopharmaceutical industry.

Details

ISSN :
14708744 and 08854513
Volume :
66
Database :
OpenAIRE
Journal :
Biotechnology and Applied Biochemistry
Accession number :
edsair.doi.dedup.....cf22c2af53cc27e65dcdaf2d377d03c0
Full Text :
https://doi.org/10.1002/bab.1785