Back to Search Start Over

Birational geometry of defective varieties, II

Authors :
Claudio Fontanari
Edoardo Ballico
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

Let $X \subset \mathbb{P}^r$ be smooth and irreducible and for $k \ge 0$ let $\nu_k(X)$ (resp., $\delta_k(X)$) be the $k$-th contact (resp., the $k$-th secant) defect of $X$. For all $k \ge 0$ we have the inequality $\nu_k(X) \ge \delta_k(X)$ and in the case $k=1$ we characterize projective varieties $X$ for which equality holds, $\dim \mathrm{Sing}(X) \le \delta _1(X) -1$ and the generic tangential contact locus is reducible.<br />Comment: Accepted for publication in Communications in Algebra

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....cf0ca782007df0e91ed4f50d116be2be
Full Text :
https://doi.org/10.48550/arxiv.2010.10807