Back to Search
Start Over
Birational geometry of defective varieties, II
- Publication Year :
- 2020
- Publisher :
- arXiv, 2020.
-
Abstract
- Let $X \subset \mathbb{P}^r$ be smooth and irreducible and for $k \ge 0$ let $\nu_k(X)$ (resp., $\delta_k(X)$) be the $k$-th contact (resp., the $k$-th secant) defect of $X$. For all $k \ge 0$ we have the inequality $\nu_k(X) \ge \delta_k(X)$ and in the case $k=1$ we characterize projective varieties $X$ for which equality holds, $\dim \mathrm{Sing}(X) \le \delta _1(X) -1$ and the generic tangential contact locus is reducible.<br />Comment: Accepted for publication in Communications in Algebra
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....cf0ca782007df0e91ed4f50d116be2be
- Full Text :
- https://doi.org/10.48550/arxiv.2010.10807