Back to Search Start Over

A Hybrid SFANC-FxNLMS Algorithm for Active Noise Control Based on Deep Learning

Authors :
Woon-Seng Gan
DONGYUAN SHI
Zhengding Luo
Source :
IEEE Signal Processing Letters. 29:1102-1106
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

The selective fixed-filter active noise control (SFANC) method selecting the best pre-trained control filters for various types of noise can achieve a fast response time. However, it may lead to large steady-state errors due to inaccurate filter selection and the lack of adaptability. In comparison, the filtered-X normalized least-mean-square (FxNLMS) algorithm can obtain lower steady-state errors through adaptive optimization. Nonetheless, its slow convergence has a detrimental effect on dynamic noise attenuation. Therefore, this paper proposes a hybrid SFANC-FxNLMS approach to overcome the adaptive algorithm's slow convergence and provide a better noise reduction level than the SFANC method. A lightweight one-dimensional convolutional neural network (1D CNN) is designed to automatically select the most suitable pre-trained control filter for each frame of the primary noise. Meanwhile, the FxNLMS algorithm continues to update the coefficients of the chosen pre-trained control filter at the sampling rate. Owing to the effective combination of the two algorithms, experimental results show that the hybrid SFANC-FxNLMS algorithm can achieve a rapid response time, a low noise reduction error, and a high degree of robustness.

Details

ISSN :
15582361 and 10709908
Volume :
29
Database :
OpenAIRE
Journal :
IEEE Signal Processing Letters
Accession number :
edsair.doi.dedup.....ce889e0c4a4cb2b8ad8869d286f43478
Full Text :
https://doi.org/10.1109/lsp.2022.3169428