Back to Search
Start Over
Strain-to-strain difference of V protein of measles virus affects MDA5-mediated IFN-β-inducing potential
- Source :
- Molecular Immunology. 48(4):497-504
- Publication Year :
- 2011
- Publisher :
- Elsevier, 2011.
-
Abstract
- Laboratory-adapted and vaccine strains of measles virus (MV) induce type I interferon (IFN) in infected cells to a far greater extent than wild-type strains. We investigated the mechanisms for this differential type I IFN production in cells infected with representative MV strains. The overexpression of the wild-type V protein suppressed melanoma differentiation-associated gene 5 (MDA5)-induced IFN-β promoter activity, while this was not seen in A549 cells expressing CD150 transfected with the V protein of the vaccine strain. The V proteins of the wild-type also suppressed poly I:C-induced IFN regulatory factor 3 (IRF-3) dimerization. The V proteins of the wild-type and vaccine strain did not affect retinoic acid-inducible gene 1 (RIG-I)- or toll-IL-1R homology domain-containing adaptor molecule 1 (TICAM-1)-induced IFN-β promoter activation. We identified an amino acid substitution of the cysteine residue at position 272 (which is conserved among paramyxoviruses) to an arginine residue in the V protein of the vaccine strain. Only the V protein possessing the 272C residue binds to MDA5. The mutation introduced into the wild-type V protein (C272R) was unable to suppress MDA5-induced IRF-3 nuclear translocation and IFN-β promoter activation as seen in the V proteins of the vaccine strain, whereas the mutation introduced in the vaccine strain V protein (R272C) was able to inhibit MDA5-induced IRF-3 and IFN-β promoter activation. The other 6 residues of the vaccine strain V sequence inconsistent with the authentic sequence of the wild-type V protein barely affected the IRF-3 nuclear translocation. These data suggested that the structural difference of laboratory-adapted [corrected] MV V protein hampers MDA5 blockade and acts as a nidus for the spread/amplification of type I IFN induction. Ultimately, measles vaccine strains have two modes of IFN-β-induction for their attenuation: V protein mutation and production of defective interference (DI) RNA.
- Subjects :
- Interferon-Induced Helicase, IFIH1
MDA5
Immunology
Molecular Sequence Data
Receptors, Cell Surface
Cell Line
Measles virus
DEAD-box RNA Helicases
Structure-Activity Relationship
Viral Proteins
Signaling Lymphocytic Activation Molecule Family Member 1
Species Specificity
Interferon
Antigens, CD
medicine
Animals
Humans
Amino Acid Sequence
Cysteine
RNA, Messenger
Promoter Regions, Genetic
Molecular Biology
Peptide sequence
Gene
Regulation of gene expression
biology
IRF-3
RNA
Transfection
Interferon-beta
biology.organism_classification
Phosphoproteins
Virology
Molecular biology
Gene Expression Regulation
Cell culture
V protein
Laboratories
medicine.drug
Subjects
Details
- Language :
- English
- ISSN :
- 01615890
- Volume :
- 48
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- Molecular Immunology
- Accession number :
- edsair.doi.dedup.....ce827b1e21d5c4243b4f3a5a850c921a